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Sum-Product and Character Sums in finite fields

Mei-Chu Chang

University of California, Riverside

In this talk I will present estimates on incomplete character sums in finite fields, with special
emphasize on the non-prime case. Some of the results are of the same strength as Burgess celebrated
theorem for prime fields. The improvements are mainly based on arguments from arithmetic combi-
natorics providing new bounds on multiplicative energy and an improved amplification strategy. In
particular, we improve on earlier work of Davenport-Lewis and Karacuba.

Primitive elements on lines in extensions

Stephen D Cohen

University of Glasgow

Davenport (1937) and Carlitz (1953) proved that provided q is sufficiently large, whenever θ
generates the extension Fqn of Fq (i.e., Fq(θ) = Fqn), then there exists an element a ∈ Fq such that
θ + a is a primitive element of Fqn .

For quadratic extensions, following a more geometrical formulation and a conjecture by Giudici
and Margaglio (1980), I proved (1983) a complete unconditional existence result, namely that for
any finite field Fq, any θ generating Fq2 over Fq and any non-zero α ∈ Fq2 , there exists an element
a ∈ Fq such that α(θ + a) is a primitive element of Fq2 .

As regards cubic extensions, in the Fq6 conference proceedings Mills and McNay (2002) gave
strong evidence supporting a (complete) conjecture on the existence of primitive elements of Fq3 of
the form θ + a, a ∈ Fq for any generating element θ. I have recently proved this conjecture and
partially extended it to the existence of primitive elements on general lines.

For quartic extensions Fq4 is it realistic to hope to be able to establish analogous complete
existence results?

The talk will review these results and associated techniques.



APN Polynomials: An Update

J. F. Dillon

National Security Agency
Fort George G. Meade, MD USA

A map f : GF(2m)→ GF(2m) is almost perfect nonlinear, abbreviated APN, if x 7→ f(x+a)−f(x)
is 2-to-1 for all nonzero a in GF(2m). If f(0) = 0, then this condition is equivalent to the condition
that the binary code of length 2m − 1 with parity-check matrix

H :=

[
· · · ωj · · ·
· · · f(ωj) · · ·

]
is double-error-correcting, where ω is primitive in GF(2m).

After setting the stage with an overview of these maps, their polynomials and their codes, we
shall give an account of some recent developments, some of which illuminate long-standing open
questions.

Zeta Functions in Number Theory and Combinatorics

Wen-Ching Winnie Li

Pennsylvania State University, U.S.A. and

National Center for Theoretical Sciences, Taiwan

Roughly speaking, a zeta function is a counting function. Well-known zeta functions in number
theory include the Riemann zeta function and the zeta function attached to an algebraic variety
defined over a finite field. The former counts integral ideals of a given norm, while the latter counts
solutions over a finite field. On the combinatorics side, attached to a finite graph is the Ihara zeta
function, which counts geodesic cycles of a given length. In a recent joint work with Ming-Hsuan
Kang, we obtained the zeta function of a finite 2-dimensional complex arising from the Bruhat-Tits
building of PGL3 over a local field. Such a zeta function counts geodesic cycles of a given length up
to homotopy. This is the first explicit zeta functions for complexes of dimension greater than one.
Like graph zeta functions, a complex zeta function has the following features:

(1) It is a rational function;

(2) It provides topological and spectral information of the complex;

(3) It satisfies the Riemann Hypothesis if and only if the complex is spectrally optimal, called a
Ramanujan complex.

In this survey talk I shall compare the zeta functions mentioned above and discuss the role of the
Riemann Hypothesis, emphasizing connections between combinatorics and number theory. If time
permits, comments on zeta functions of complexes arising from general PGLn will be made.



Discrete logarithm assumptions in cryptography

Alfred Menezes

University of Waterloo

(Joint work with Neal Koblitz)

The search for mathematically rigorous proofs of security for public-key cryptographic protocols
has been an important theme of researchers over the past twenty years. However, there are many
issues that arise when interpreting these reductionist proofs. I will consider the case of security proofs
that rely on the hardness of non-standard versions of the discrete logarithm problem.

The asymptotic theory of error-correcting codes

Harald Niederreiter

RICAM Linz and University of Salzburg

For a prime power q and 0 ≤ δ ≤ 1, let αq(δ) be the largest asymptotic information rate that can
be achieved by a sequence of q-ary codes with increasing lengths and asymptotic relative minimum
distance δ. It is known that αq(0) = 1 and αq(δ) = 0 for (q − 1)/q ≤ δ ≤ 1. A fundamental problem
in coding theory is to find lower bounds on αq(δ) in the remaining range 0 < δ < (q − 1)/q. A
classical lower bound is the asymptotic Gilbert-Varshamov bound, but in a spectacular breakthrough
Tsfasman, Vlăduţ, and Zink showed in 1982 that one can beat this bound by using algebraic-geometry
codes.

In recent years the Tsfasman-Vlăduţ-Zink bound was improved by several authors, including
Elkies, Xing, Maharaj, Özbudak, and the speaker. These advances are based on constructions of
new types of algebraic-geometry codes. The talk discusses these recent developments and also gives
a general introduction to the area.



Contributed Talks

Multiplicative Order of Gauss Periods

Omran Ahmadi

Claude Shannon Institute, University College Dublin

(Joint work with I. E. Shparlinski and J. F. Voloch)

We obtain a lower bound on the multiplicative order of Gauss periods which generate normal bases
over finite fields. This bound improves the previous bound of J. von zur Gathen and I. E. Shparlinski.

Let r = 2n + 1 be a prime number coprime with q, a prime power, and β ∈ Fq2n be a primitive
rth root of unity. Then the element

α = β + β−1 ∈ Fqn

is called a Gauss period of type (n, 2).
The following theorem establishes a lower bound on the multiplicative order of Gauss period of

type (n, 2) generating normal bases.

Theorem Let p be the characteristic of Fq and let q be a primitive root modulo a prime r = 2n+ 1.
Then, uniformly over q, the multiplicative order Ln of α, given above, satisfies the bound

Ln ≥ exp((π

√
2(p− 1)

3p
+ o(1))

√
n),

as n→∞.

Construction of New Toric Quantum Codes

Clarice Dias de Albuquerque

Universidade Estadual de Campinas

(Joint work with Reginaldo Palazzo Jr. and Eduardo Brandani Silva)

The use of properties from quantum mechanics theoretically allows faster quantum computation
than classic computation to obtain solutions of certain computational problems. However, one of the
difficulty to the construction of such computers is the existence of decoherence due to the interaction
between the systems and the surrounding environment.

Research indicates that this problem may be solved by use of quantum error-correcting codes.
Most of the codes available in the literature are based on quantum stabilizer codes. The toric codes
are a class of stabilizer codes associated to the square lattices in the torus, [1], which the parameters
depend on the topology of the torus.



In [2] it is proposed a new interpretation of the toric codes based on a different regular funda-
mental region, Lee spheres, that provides a significant improvement in the length of the code and,
consequently, an improvement in the coding rate too.

In this paper, we propose to use the concept of polyomino in the construction of the fundamental
region of a toric code which tessellates a corresponding square lattice by translations of this poly-
nomino (fundamental region). The codes defined in this way keep the same properties of the Kitaev’s
toric codes. This construction reproduces known codes and generates countless new classes of toric
quantum codes, for instance, the class [[d2, 2, d]], which is the best known so far, in terms of achieving
the least codeword length.
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Cycles Structure of Permutations Induced by Perfect Nonlinear Functions
over Finite Fields

Hassan Aly

University of Cairo

(Joint work with Rasha Shaheen)

Let p be an odd prime and q = pn be a prime power with positive integer n. Let Fq be the finite
field of order q and F∗q is the nonzero elements in Fq. A function f : Fq → Fq is called a perfect
nonlinear function if its difference function ∆f (x) = f(x + a) − f(x) − f(a) is a permutation over
Fq for each a ∈ F∗q. This paper gives the complete cycles structures of the permutations ∆f (x), for
a ∈ Fp and gcd(n, p) = 1, over Fq for the perfect nonlinear functions:

1. f(x) = x2 over Fq.

2. f(x) = xp
k+1 over Fq where n/gcd(n, k) is odd and k < n

2
,

3. f(x) = x10 + x6 − x2 over F3n where n ≥ 5 is odd,

4. f(x) = x10 − x6 − x2 over F3n where n ≥ 5 is odd.

An algorithm has been developed to compute the cycles structure of any difference permutation
function ∆f (x), for a ∈ Fp and gcd(n, p) = 1, over Fq, for any perfect nonlinear function f which is
a Dembowski-Ostrom polynomial with coefficients in Fp. Several examples have been obtained over
small finite fields. Cycles of small lengthes of such permutations may be avoided in applications.
Extending this algorithm to a Dembowski-Ostrom polynomial with coefficients in Fpn is an open
problem.

The main objective of studying such cycles is to find under which circumstances different per-
mutations ∆f (x) split up the finite field Fq into the same number of cycles of the same lengthes. In



this direction the paper shows that if k1 ≡ pk2 (mod n) the permutations induced by the functions
xp

k1+1 and xp
k2+1 have the same number of cycles of the same lengthes. As an example the permu-

tations of the two functions x26 and x126 splits the finite field F57 into 1 cycle of length 1, 1 cycle of
length 4, 72 cycles of length 217, and 72 cycles of length 868. This is taken place although k1 and
k2 in this example have been chosen less than n

2
, the condition required for the two functions to be

unequivalent. Other examples are shown in the paper. We are working to find all possible values of
k ≤ n

2
that give this property. The work of this paper is based on the results of Mullen and Vaughan

in [1].
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Error correcting codes arising from cubes

Sheng Bau

Fuzhou University

In this note, experimental results on binary nonlinear error correcting codes arising from special
families of graphs will be reported. The graph Qn of the n-dimensional cube provide binary nonlinear
error correcting codes with high capacity of error correction. The codes are given by maximum
induced forests of a specific type in cubes, obtained by deletion of a (minimum) decycling set. Many
interesting problems remain open in this topic.
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Subclass of non-binary comulative Goppa codes

Sergey Bezzateev

St.Petersburg University of Aerospace Instrumentation

(Joint work with Natalia Shekhunova)

A new subclass of non-binary comulative (L,G) -codes [1] with L = {α ∈ GF (q2l) : G(α) 6= 0} and
G(x) = g(x)q, where g(x) - is a separable polynomial of one of the following forms:

g1(x) = xt+1 + 1,
g2(x) = xt + xt−1 + 1,
g3(x) = xt + x+ 1,
g4(x) = xt−1 + 1, where t = ql

is considered. For these codes the improved bounds for dimension and minimal distance are obtained.
The construction of the presented subclass is based on the approach used early for constructing the
subclasses of the best known binary classical Goppa codes [2]. It is shown that q-ary Goppa codes
from the new subclass can be represented as a chain of equivalent and truncated codes in the same
way as it was done in the binary case before [2]. The main theorem about the dimension of the first
code from the subclass gives us an improved estimation which is better than it is for q-ary BCH
codes.

Theorem Let us consider the q-ary comulative (L,G) code with length n = t2− t− 1 and G1(x) =
(xt+1 + 1)q and L = {GF (t2) \ {α : G1(α) = 0}}, where t = ql. The dimension k of this code is
estimated as

k ≥ n− 2l(q(t+ 1)− (t+ 1)) + 2l( (q−1)(q+3)
2

).

Examples of codes from subclass for q= 3,5,7,11 are presented.
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Distinct difference configurations

Simon R. Blackburn

Royal Holloway, University of London

(Joint work with T. Etzion, K.M. Martin, M.B. Paterson)

We say that a set {v1, v2, . . . , vm} of vectors in Z2 is a distinct difference array with m dots and
diameter d if the following two conditions hold:



1. The m(m− 1) vectors vi − vj (where i 6= j) are distinct.

2. The vectors vi − vj have (Euclidean) length at most d.

Costas arrays and B2 sequences are examples of distinct difference arrays.
We give some constructions and bounds for distinct difference arrays (from [1] and [2]), and show

how these results settle (in the negative) an old conjecture of Golomb and Taylor [1] on the existence
of infinitely many honeycomb arrays.
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The multi-Frobenius non-classical curves

Herivelto Borges

The University Texas at Austin

An irreducible curve F defined over Fq is called q-Frobenius non-classical if the image Fr(P ) of
each simple point P of F under the Frobenius map lies on the tangent line at P .

Based on [2], Hefez and Voloch extended the study of the q-Frobenius non-classical curves in [1],
where some interesting arithmetic and geometric properties of such curves were first pointed out.

In this talk, I will present and characterize all irreducible plane curves defined over Fq which are
simultaneously Frobenius non-classical for different powers of q. Such characterization gives rise to
many previously unknown curves which turn out to have some interesting properties. For instance,
for n ≥ 3 a plane curve which is both q- and qn-Frobenius non-classical will have its number of
Fqn-rational points attaining the Stöhr-Voloch bound.
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Multidimensional cyclic burst–error–correcting codes

Igor Boyarinov

Institute for System Analysis RAS

Let F [x1, . . . , xm] be the ring of polynomials f(x1, . . . , xm) over GF (q) and In1,...,nm =
〈xn1 − 1, . . . , xnm − 1〉 be the ideal of F [x1, . . . , xm]. A m–dimensional cyclic code is defined as an
ideal in the residue class ring R(x1, . . . , xm) = F [x1, . . . , xm]/In1,...,nm . A polynomial e(x1, . . . , xm) ∈
R(x1, . . . , xm) with the maximal degrees of variables degxie(x1, . . . , xm) < ni, i = 1, . . . ,m is a
cyclic b1×. . .×bm−burst if there exist a polynomial b(x1, . . . , xm) with the maximal degrees of vari-
ables degxib(x1, . . . , xm) < bi such that the polynomials e(x1, . . . , xm) and xu1 . . . xumb(x1, . . . , xm)
belong to the same residue class in R(x1, . . . , xm) for some 0 ≤ ui < ni, i = 1, . . . ,m.

In this paper we consider m–dimensional cyclic codes correcting cyclic b1 × . . .× bm−bursts of
errors. We generalize and develop the constructions of two–dimensional cyclic array codes correcting
rectangular cyclic bursts of errors [1]. So m–dimensional cyclic Fire codes are described as follows.

Theorem Let s, bi be positive integers and p be a prime, q = ps, ci ≥ 2bi − 1, i = 1, . . . ,m.
Also, let pi(xi) be a irreducible polynomial over GF (q) of degree νi ≥ bi and period ξi, ni =
LCM(ci, ξi), i = 1, . . . ,m. Then the intersection of ideals Ac1,...,cm = 〈xc11 − 1, . . . , xcmm − 1〉 and
Ap1(xi),...,pm(xm) = 〈p1(x), . . . , pm(xm)〉 in the the residue class ring
R(x1, . . . , xm) = F [x1, . . . , xm]/In1,...,nm is the m–dimensional cyclic code correcting cyclic b1 ×
. . .× bm−bursts of errors.
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Bounds on the Size of a Network Error Correcting Code

Eimear Byrne

University College Dublin

Versions of the Singelton, sphere-packing and Gilbert-Varshamov bounds for a particular model
for error-correcting codes for coherent network coding were given in [1]. Here we extend the classical
Plotkin and Elias bounds (cf. [2, Ch. 17]) for the same model. We assume an acyclic digraph with
n edges, a single source node s and several sinks labelled by elements of a set T . The min-cut for
each sink t is nt, which we assume to be the number of edges incident with t. Network words are
transmitted along the network via an invertible transfer matrix F ∈ Fn×nq and are projected to sink t
by Ft ∈ Fn×ntq , a rank nt submatrix of F . We define Kt := kerFt ⊂ Fnq and `t := |supp(Kt)|. If x ∈ Fnq
is transmitted and edges of the network are corrupted by an error vector e then the word received
by t is yt = (x + e)Ft. Ft induces a distance function on Fntq by dt(u,v) := min{dH(x,y) : xFt =
u,yFt = v}, where dH denotes the Hamming distance. We let Ct ⊂ {xFt ∈ Fntq : x ∈ Fnq } = Fnt
denote an (nt, |Ct|, dt) network for node t where dt := dt(Ct). A network code C is a collection
C := {Ct : t ∈ T} and we say that C is an (n, {(nt, ct, dt) : t ∈ T}) network code. Let γ := q−1

q

d := min{dt : t ∈ T}, ` := min{`t : t ∈ T} and c := min{|Ct|x : t ∈ T}.



Theorem Let d > γn. Then

c ≤ min

{
dt − γ`t
dt − γn

: t ∈ T
}
≤ d− γ`
d− γn

Theorem Let dt < γn and let r ≤ γn−
√
γ(γn− dt)(n− `t) for each t ∈ T . Then

c ≤ min

{
(dt − γ`t)γ(n− `t)qn−`t

(r2 − 2γnr + γ2`tn+ γdt(n− `t))|Bn−`t(r − γ`t)|
: t ∈ T

}
.
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Structural weaknesses of differentially uniform mappings

Anne Canteaut

INRIA Paris-Rocquencourt, project-team SECRET

(Joint work with Maria Naya-Plasencia)

The resistance of a function F : Fn
2 → Fn

2 to differential cryptanalysis is quantified by ∆F which
is the maximal cardinality |{x ∈ Fn

2 , F (x + α) + F (x) = β}| for α, β ∈ (Fn
2 )∗. Then, F is said to

be differentially ∆F -uniform [2]. While ∆F must be as small as possible, we show that a small ∆F

introduces other weaknesses in a cryptosystem, due to the existence of a nonzero output difference
δ such that the set D(δ) = {α ∈ Fn

2 ,∃x ∈ Fn
2 with F (x+ α) + F (x) = δ} has a large cardinality. It

can be shown that, if F is a differentially ∆-uniform permutation over Fn
2 , then |D(δ)| ≥ 2n∆−1 for

any δ ∈ Fn
2 . The algebraic structure of D(δ) is also of great importance, especially the existence of a

large affine subspace V such that the proportion of elements in V which belong to D(δ) is high. The
extreme situation, related to the crooked property [1], occurs in particular when F−1 is quadratic.

As an example, an internal collision attack on the hash function Maraca, submitted to the SHA-3
competition, is mounted if its inner permutation F is such that there exists δ 6= 0 satisfying one of
the following conditions, where h is the hash size: |D(δ)| > 2n−

h
2 or there exists an affine subspace V

such that |D(δ)∩ V | > 2n−h and |D(δ)∩ V |/|V | > 2−
h
2 . For the concrete case of Maraca, we exploit

the existence of some δ such that D(δ) is included in a subspace of dimension 640 of F1024
2 . But,

contrary to a recent attack by Indesteege which only holds for this very particular permutation, our
result is very general and it exploits some structural properties which contradict the usual security
criterion. For instance, the attack becomes even more efficient if the inner permutation is replaced
by the inverse function over Fn

2 .
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CCZ-equivalence and Boolean functions

Claude Carlet

University of Paris 8, LAGA

(Joint work with Lilya Budaghyan)

The notion of CCZ-equivalence of vectorial functions, introduced in [3], is the proper notion of
equivalence for vectorial functions used as S-boxes in cryptosystems. It preserves the differential
uniformity and the nonlinearity of a function (the properties which describe the resistance of the
function to differential and linear attacks, respectively).

Previously, CCZ-equivalence of vectorial Boolean functions has been studied in [1, 2]. We
study further CCZ-equivalence of Boolean (n,m)-functions and its relation to EA-equivalence. EA-
equivalence is a very particular case of CCZ-equivalence which is easy to deal with. We prove that
for Boolean functions (that is, for m = 1), CCZ-equivalence coincides with EA-equivalence. On
the contrary, we show that for (n,m)-functions, CCZ-equivalence is strictly more general than EA-
equivalence when n ≥ 5 and m is greater or equal to the smallest positive divisor of n different from 1.
Our result on Boolean functions allows us to study the natural generalization of CCZ-equivalence
corresponding to the CCZ-equivalence of the indicators of the graphs of the functions. We show that
it coincides with CCZ-equivalence.
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Determination of the minimal length of some linear codes

Eun Ju Cheon

Gyeongsang National University



Let F n
q be the n-dimensional vector space over the finite field Fq of order q, where q is a prime

power. A q-ary [n, k, d] linear code C, simply [n, k, d]q code is a k-dimensional linear subspace of
F n
q with minimum Hamming distance d. Here d = min{d(x, y) | x, y ∈ C, x 6= y} and d(x, y) is the

number of different coordinates in x and y.
The fundamental problem in coding theory is to optimize any one parameter among n, k and d

when the other two are given. We consider the problem to find the smallest length n, denoted by
nq(k, d) for which there exists an [n, k, d]q linear code for given k and d. ([1], [4])

A linear code is called (length) optimal if whose length is equal to nq(k, d).
For an [n, k, d]q linear code C, it holds that

n ≥ gq(k, d) :=
k−1∑
i=0

⌈
d

qi

⌉
,

where dxe denotes the smallest integer greater than or equal to x. This is called the Griesmer bound.
Obviously, we note nq(k, d) ≥ gq(k, d).

We prove that for q ≥ 5, there does not exist a [gq(6, d), 6, d]q code with q5 − q3 − q2 − 2q + 1 ≤
d ≤ q5− q3− q2− q, and we have nq(6, d) = gq(6, d) + 1 for q5− q3− q2−2q+ 1 ≤ d ≤ q5− q3− q2− q
and q ≥ 5.
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On constructing non-associative commutative algebras of dimension 2
over a prime field

Robert Coulter

University of Delaware

(Joint work with Marie Henderson)

We discuss recent work on constructing all algebras of the title using a method for constructing
rings introduced by Batten, Coulter and Henderson. There it was conjectured that the number of
non-isomorphic non-associative commutative algebras of dimension 2 over a prime field GF (p) is
p2 + 3p + 6 if p > 3 and p2 + 3p + 5 if p = 3. Though we are unable, at this time, to establish the
full conjecture, we do prove that the number of classes is at least p2.

The construction method involves Dembowski-Ostrom (DO) polynomials, with the resulting iso-
morphism problem reducing to the problem of determining the distinct orbits of a suitable action of
the group of all non-singular linear transformations (as linearised permutation polynomials) on the
set of all DO polynomials.

In the original paper of Batten et al, it was shown there are precisely 6 distinct strong isotopism
classes for such algebras, regardless of the odd characteristic of the underlying prime field. We take a



similar approach for the isomorphism problem, looking to provide an explicit representative for each
orbit. The isomorphism problem is, in a sense, a fine tuning of the strong isotopism classification, so
that one may attack each of the 6 strong isotopism classes separately. Unfortunately, the isomorphism
problem is sufficiently more difficult, that even with this simplification of the problem, the full
statement of the conjecture remains unproved.
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Galois Rings, DRADS, and 3-class association schemes with rank 4
automorphism groups

James Davis

University of Richmond

(Joint work with J. Polhill)

Doubly Regular Asymmetric Digraphs (DRAD) with rank 4 automorphism groups were previously
thought to be rare. We exhibit difference sets in Galois Rings that can be used to construct an infinite
family of DRADs with rank 4 automorphism groups. These DRADs can also be used to construct
nonsymmetric 3-class imprimitive association schemes.

On C-ultrahomogeneous graphs and digraphs

Italo J. Dejter

University of Puerto Rico

The notion of a C-ultrahomogeneous graph, due to Isaksen et al., is adapted for digraphs and
studied for the twelve cubic distance transitive graphs, with C formed by g-cycles and (k− 1)-paths,
where g = girth and k = arc-transitivity. Excluding the Petersen, Heawood and Foster (90 vertices)
graphs, one can go further by considering the (k − 1)-powers of g-cycles under orientation assign-
ments provided by the initial approach. This allows the construction of fastened C-ultrahomogeneous
graphs, via applications of finite fields, with C formed by copies of K3, K4, C7 and L(Q3), for the
Pappus, Desargues, Coxeter and Biggs-Smith graphs.

In particular, the Biggs-Smith graph yields a connected edge-disjoint union of 102 copies of
K4 which is a non-line-graphical Menger graph of a self-dual (1024)-configuration, a K3-fastened
{K4, L(Q3)}-ultrahomogeneous graph. This contrasts with the self-dual (424)-configuration of [1],
whose non-line-graphical Menger graph is K2-fastened {K4, K2,2,2}-ultrahomogeneous.

The construction of [1] and the fact that the Coxeter graph (28 vertices) yields the Klein graph
(56 vertices) as a C-ultrahomogeneous graph embedded in the torus of genus 3 (dressed in F. Klein’s
work as the quartic x3y + y3z + z3x = 0) with faces delimited by the g-cycles (g = 7) depend on
finite fields of characteristic 2, as it does also our final result on the existence of a strongly connected
~C4-ultrahomogeneous digraph on 168 vertices and 126 pairwise arc-disjoint 4-cycles, with regular
indegree and outdegree 3 and no circuits of lengths 2 and 3.
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Elliptic Periods and Torus-Based Cryptography

Clément Dunand

University of Rennes 1

(Joint work with R. Lercier)

This work aims at giving an efficient parameterization of algebraic tori using elliptic normal bases
in finite fields extensions.

Usually, finite field discrete logarithm based cryptosystems make use, not of a full cyclic group
F×qn , but of a subgroup of order Φn(q), where Φn denotes the n-th cyclotomic polynomial. In terms
of algebraic varieties, such subgroups have the structure of algebraic tori of dimension ϕ(n) (cf. [3]).
The question that we consider is to what extent we can efficiently parameterize elements of these
tori with ϕ(n)-tuples, instead of n-tuples. This is an interesting feature in practical applications.

In [2], van Dijk and Woodruff exhibit an explicit algorithm for computing the following parame-
terization:

Θ : Tn(Fq)×
∏
d|n

µ(n/d)=−1

F×
qd
−→

∏
d|n

µ(n/d)=+1

F×
qd
.

They show that this requires O(n3 log2 q) elementary operations. We observe that the heaviest part
of the complexity comes from exponentiations to powers with sparse decompositions in basis q and
we succeed in speeding up the algorithm with the help of an efficient normal basis representation of
Fqn , more precisely elliptic normal bases as recently introduced in [1].

In a torus cryptographic context, q is large and n is small, i.e. n = o(q). When n is the product
of two distinct primes, we prove that we can reduce the asymptotical cost by a log q factor. For more
general n, we observe a similar improvement.
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Excluded Norm Problems

Gary L. Ebert

University of Delware

In recent years there have been several instances of situations in finite geometry which eventually
lead to questions about excluded norms in finite fields. By this, I mean problems of the following
type:

1. Determine the elements in S1 = F∗q \ {Nq6/q2(1 + u) | uq2−q+1 = 1}, for any odd prime power q.

2. Let u ∈ Fq3\Fq such that u3 = σu+1. Determine the elements in S2 = F∗q3\{Nq6/q3(a+bu+u2) |
a, b ∈ Fq2}, for any prime power q.

It should be noted that in the first problem Nq6/q2(1 + u) ∈ Fq when u ∈ Fq6 is a (q2 − q + 1)st root
of unity.

The first problem arose when enumerating the odd order three-dimensional flag-transitive affine
planes, and the second problem arose when constructing certain semifields of order q6 which are
2-dimensional over their left nucleus and 6-dimensional over their center. The amazing answers to
these two problems are the following:

1. S1 = ∅ if q 6≡ 1 (mod 3), and S1 = {−1} if q ≡ 1 (mod 3).

2. S2 = {σ2 + 9u+ 3σu2} if q is odd, and S2 = ∅ if q is even.

The known proofs are lengthy and awkward, involving messy polynomial counts in the first case and
a careful analysis of the Fq-rational points on an algebraic plane curve in the second case. It would
be nice to find a general context for proving such results, and to know how rare such results are.

New caps in PG(k, 5)

Yves Edel

Ghent University

(Joint work with J. Bierbrauer)

We give a new recursive construction for caps in PG(k, q), which generalizes the construction
that lead to the 66-cap in PG(4, 5) [2]. Apart from giving a more elegant construction for the 66-cap
we are able to construct a 195-cap in PG(5, 5), which improves the former lower bound (186 of [2])
on the maximal size of a cap in PG(5, 5).

With the methods of [1] we get, using the new 195-cap, also substantial improvements on lower
bound on the maximal size of a cap in PG(8, 5) and PG(11, 5).
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Normal cyclotomic schemes over a Galois ring

Sergei Evdokimov

Steklov Institute of Mathematics at St.Petersburg

Let R be a finite commutative ring with identity and let C = Cyc(K,R) where K is a subgroup of
the multiplicative group R× of the ring R, be a cyclotomic scheme over R (see e.g. [1]). Cyclotomic
schemes were introduced in 1973 by Delsarte (for R a field) in connection with coding theory. Denote
by Aut(C) the automorphism group of C, i.e. the set of all permutations f ∈ Sym(R) such that x−y ∈
rK implies xf − yf ∈ rK for all x, y, r ∈ R. The scheme C is called normal if Aut(C) ≤ AΓL1(R).
In [1] the problem of identifying the normal cyclotomic schemes over the ring R was reduced to that
over the local components of R.

To identify the normal cyclotomic schemes over a local ring, first suppose that R = Fq is a field.
If K = F×q , then Aut(C) = Sym(R) and it is easy to see that the scheme C is normal if and only
if q = 2, 3, 4. On the other hand, a reformulation of an old number-theoretical result by McConnel
(1963) shows that C is normal for all K < F×q .

Now let R be a Galois ring (see [2]). We observe that Galois rings are local rings that generalize
both finite fields and prime power cardinality factors of the ring Z. To formulate the main result
we need the following definition. A group K ≤ R× is called pure (resp. quasipure) if the equality
K + I = K where I is an ideal of R, implies that I = 0 (resp. I ⊂ ann(rad(R))).

Theorem Let R be a Galois ring with residue field Fq, other than a field, and K ≤ R× a group.
Then the scheme Cyc(K,R) is normal if and only if the group K is pure for q > 2 and quasipure for
q = 2.

The case of an odd q was earlier studied in [1].
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Geometrically Uniform Hyperbolic Signal Sets Generated by Arithmetic
Fuchsian Groups

M. B. Faria

State University of Campinas

(Joint work with V. L. Vieira, R. Palazzo Jr.)

In this paper we consider hyperbolic tessellations {10λ, 2λ} denser than the self-dual tessellations
{4g, 4g}, and so giving rise to denser lattices, in order to construct geometrically uniform hyperbolic
signal sets related to arithmetic Fuchsian groups, [1]. The relevance of the former tessellations for
λ = 2n, n ∈ N, is the connection of the group Γ10λ with the group Γ4g, for g = 2n and g = 5 · 2n, [2].
The difficulty that comes out as a consequence of the change from the tessellation {4g, 4g} to the
tessellation {p, q}, is to determine the values of p such that Γp is an arithmetic Fuchsian group (to
determine the arithmetic Fuchsian group Γp, (a Fuchsian group associated with a fundamental region,
polygon with p-edges) in the group Γ(A,O) we need to determine the number field K and a ring R
in K, such that the quaternion algebra be given by A = (a, b)K and the maximal order be given by
O = (a, b)R). The complexity involved consists not only in finding a standard form for the generator
matrices of the group Γp (since we want to construct a quaternion division algebra A from Γp), but in
finding explicitly the number field K and a ring R ⊂ K such that A = (a, b)K and O = (a, b)R. As an
example of this difficulty and complexity, we mention the case of the group Γ18 associated with the
tessellation {12g − 6, 3}, when g = 2. The search of a group Γp, or equivalently, the surface H2/Γp,
with the aim at constructing a hyperbolic signal set derived from the tessellation {p, q}, is equivalent
to searching a prime ideal p, conveniently chosen in the integer ring DK of a number field K, such
that the Euclidean signal set, coming from the quotient ring DK/p has a field structure and this is
finite since p is the principal ideal with norm q, with q prime, which follows the theory of algebraic
numbers, that this quotient is a finite field with q elements. In the construction of a signal set in the
hyperbolic plane H2, we consider a Fuchsian group whereas in the construction of a signal set in the
Euclidean plane we consider an Abelian group. In this paper we provide the necessary conditions to
obtain an arithmetic Fuchsian group Γp from a given hyperbolic tessellation {p, q}, and from this to
construct a geometrically uniform hyperbolic signal set, whose signals constitute a Gp-orbit of 0.
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Classification of Rosenbloom-Tsfasman block codes

M. Firer

State University of Campinas

(Joint work with M. M. A. Souza and L. Panek)



Poset and block metrics were introduced in recent years as alternative metrics to study error
correcting codes. Poset-block codes were introduced in 2008, intervening both poset and block
metrics. A family of such metrics is the Rosenbloom-Tsfasman block (RTB) metrics, that is defined
as follows: let N be a positive integer, N = π1+π2+. . .+πn a partition of N and V = V1⊕V2⊕. . .⊕Vn
a vector space over the finite field Fq, with dimVi = πi. The RTB weight wπ (or simply the π-
weight) of a non-zero vector x = x1 + x2 + . . .+ xn ∈ V , with xi ∈ Vi, is wπ (x) := max {i : xi 6= 0}
and dπ (x, y) := wπ (x− y) is a metric. The metric space (V, dπ) is called the π-RTB space.

Invariants of codes, such as generalized Wei minimal weights dπr , are defined in RTB-spaces as in
usual Hamming spaces, just exchanging the Hamming weight by the π-weight.

Our main result is the Classification Theorem, which asserts that a k-dimensional linear code C
with π-weight hierarchy (dπ1 , ..., d

π
k) is equivalent to a code generated by a matrix in a canonical form

0 · · · 0 0 · · · 0 0 . . . Ĩsim tim
0 · · · 0 0 · · · Ĩsim−1

tim−1
0 · · · 0

...
. . .

...
...

. . .
...

...
. . .

...

0 · · · Ĩsi1 ti1 0 · · · 0 0 · · · 0

0
0
...
0


where Ĩij =

(
Ii×i|0i×(j−1)

)
, with Ii×i and 0i×(j−1) being respectively the identity and null matrices,

dπr (C) = ij for si1 + ...+ sij−1
< r ≤ si1 + ...+ sij−1

+ sij and si1 + . . .+ sim = k.
Beside this result, we develop much of the classical theory of error correcting codes for RTB-

codes, including determination of packing and covering radius, classification of MDS, perfect codes
and quasi-perfect codes and propose an algorithm for syndrome decoding, including precise descrip-
tion of syndrome leaders.

Metric Diophantine Approximation for Formal Laurent Series over Finite
Fields

Michael Fuchs

National Chiao Tung University

Let Fq((T
−1)) be the field of formal Laurent series endowed with the valuation | · | induced by

the degree function. Consider the set

L = {f ∈ Fq((T
−1)) : |f | < 1}

together with the Haar probability measure. Several recent studies investigated the diophantine
approximation problem∣∣∣∣f − P

Q

∣∣∣∣ < 1

q2n+ln
, degQ = n, gcd(P,Q) = 1, (1)

where f ∈ L and ln is a sequence of non-negative integers.
For instance, in [1] a strong law of large numbers with error term for the number of pairs (P,Q)

with (1) with degQ ≤ N was proved. Moreover, in [2] a similar result for (1) without the comprime-
ness assumption was established, however, under further assumptions on ln and without an error
term.

In this talk, we will discuss improvements of these results as well as generalizations to inho-
mogeneous Diophantine approximation, restricted Diophantine approximation, and simultaneous
Diophantine approximation. A typical result which improves the main result in [2] reads as follows:



Theorem The number of pairs (P,Q) satisfying (1) without the coprimeness condition and degQ ≤
N is almost surely given by

Ψ(N) +O
(
(Ψ(N))1/2(log Ψ(N))2+ε

)
,

where ε > 0 and Ψ(N) =
∑

n≤N q
−ln.
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Perfect Hash Families PHF(3;n,m, 3) from Quadrics Q(4, q) and
Hermitian Varieties H(3, q2)

Ryoh Fuji-Hara

University of Tsukuba, Japan

(Joint work with Yuichiro Fujiwara and Ying Miao)

A perfect hash family PHF(N ;n,m, t) is an N ×n array on m symbols with m ≥ t in which every
N × t subarray (t is called the strength) contains at least one row comprised of distinct symbols.
Perfect hash families have applications in information retrieval, cryptographic key distribution, secure
frameproof codes, software testing, and so on. The most basic non-trivial case is PHFs with N =
t = 3. R. A. Walker II and C. J. Colbourn [1] listed a table of existing PHFs for the case of
N = t = 3, and expected n = o(m2). We are interested in constructing PHS(3;n,m, 3) with n as
large as possible. We show constructions of PHF(3; q2(q+ 1), q2, 3) and PHF(3; q5, q3, 3). The second
construction claims n = m5/3 for m a prime power, which exceeds all n in the table asymptotically.
For the constructions of these PHFs, Quadrics Q(4, q) in PG(4, q) and Hermitian Varieties H(3, q2)
in PG(4, q2) known as classical generalized quadrangles are effectively used.

Keywords: Perfect hash families, quadrics, Hermitian varieties.
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Classification of plane curves with infinitely many Galois points

Satoru Fukasawa

Waseda University

Let C ⊂ P2 be an irreducible plane curve of degree d ≥ 3 over an algebraically closed field K of
characteristic p ≥ 0. In 1996, H. Yoshihara defined the notion of Galois point: If the function field
extension induced from the point projection from a point P ∈ P2 is Galois, then P is said to be
Galois. A Galois point P is said to be inner (resp. outer) if P ∈ C (resp. P ∈ P2 \ C). We have a
natural question: How many Galois points are there?

In many cases, the number of Galois points has been determined. For example, Yoshihara de-
termined when p = 0 and C is smooth: The number of inner (resp. outer) Galois points is at most
four (resp. three). In most of such settled cases, the number is finite. Is there a case where C has
infinitely many Galois points?

Recently, T. Hasegawa and the author proved that the curve defined by XZq−1 − Y q = 0 where
q is a power of p in p > 0 has infinitely many inner and outer Galois points, and that a plane curve
with infinitely many inner Galois points (and d ≥ 4) is projectively equivalent to the one. How about
the case where outer Galois points exist infinitely many? We will have:

Theorem ([1]) Let ∆′(C) ⊂ P2 be the set of all outer Galois points for C. Then, the following
conditions are equivalent:

(1) ∆′(C) is an infinite set.

(2) C is a rational strange curve with a center Q and there exists a line L which contains Q and
infinitely many outer Galois points.

(3) p > 0 and C is projectively equivalent to an irreducible plane curve whose equation is of the
form

αex
pe + αe−1x

pe−1

+ · · ·+ α1x
p + α0x+ βey

pe + · · ·+ β1y
p = 0.
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Unitary superperfect polynomials

Luis H. Gallardo

University of Brest

(Joint work with O. Rahavandrainy)

A divisor d of a binary polynomial A ∈ F2[x] is unitary if gcd(d,A/d) = 1. The notion is the
same that over the integers. Set σ∗(A) =

∑
d |A, d unitary d. If A is fixed by σ∗ then A is unitary

perfect . While if σ∗(σ∗(A)) = A then A is unitary superperfect .
The object of the talk is to explain how to classify some unitary superperfect polynomials with a
small number of prime divisors. This is done under some conditions on the number of prime factors
of σ∗(A). To do that unconditionally seems to be a very difficult task.
The analogue problem over the integers was initiated by Suryanarayana [1] and Kanold [2]. While
Gallardo and Rahavandrainy [3] recently worked on unitary binary polynomials.
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The number of decomposable multivariate polynomials

Joachim von zur Gathen

B-IT, Universität Bonn

A polynomial f (multivariate over a field) is decomposable if f = g◦h for some polynomials g and
h, where g is univariate of degree at least 2. It is intuitively clear that the decomposable polynomials
form a small minority among all polynomials. The goal in this work is to give a quantitative version
of this intuition, namely an approximation to the number of decomposables over a finite field. The
relative error in our approximation is exponentially decaying in the input size. Interestingly, we find
a special case for bivariate polynomials where the intuition about the “most general decomposable
polynomials” is incorrect.

We let dr,n be the number of decomposable polynomials of degree n ≥ 2 in r ≥ 2 variables over
Fq, and denote by l the smallest prime factor of n. We have to single out the following special case:

r = 2, n/l is prime and n/l ≤ 2l − 5. (2)

The smallest examples are n = l2 with l ≥ 5, n = 11 · 13, and n = 11 · 17. Furthermore, let

m =

{
n if (1) holds ,
l otherwise,

αr,n = q(
r+n/m

r )+m−1(1− q−(r−1+n/m
r−1 )),

cr,n = 1
2

(
r−1+n/l
r−1

)
− 1,

βr,n = 2q−cr,n

1−q−1 .

Theorem For all r, n as above we have

|dr,n − αr,n| ≤ αr,n · βr,n.

Walsh spectrum of bent and almost bent functions

Faruk Göloğlu

University of Magdeburg

(Joint work with Alexander Pott)



We prove that any almost bent (AB) exponent is AB on the nonprime subfields. By using this,
we compute Wd(1) for any AB exponent d. Where

Wd(a) :=
∑
x∈F

(−1)tr(xd+ax),

where a ∈ F.
Note that in [1], Lahtonen, McGuire and Ward compute Wd(1) when d is a Kasami exponent. It

turns out thatWd(1) is the same for all AB exponents. We also prove similar results for quadratic AB
functions with coefficients from the field F2. We also generalize the result that the Gold exponents
restricted to some hyperplanes are bent, to any quadratic AB function with coefficients from F2. We
also show that they are also bent on some smaller subspaces. For these functions we give a relation
between extension- and base-field Walsh values.

The idea used to prove the above facts is based on elementary number theoretic restrictions
on intersections of cyclotomic cosets. We apply these ideas also to bent functions to prove some
properties of rotationally invariant Boolean functions, i.e. f(x) = f(x2) for all x ∈ F.

If the exponent m of the field F = F2m has a simple prime decomposition, e.g. m prime, prime
power, etc., one can relate the balance of a rotationally invariant Boolean sequence to its linear
complexity. We will also show this relation.
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Waring’s Problem with Dickson Polynomials
in Finite Fields

Domingo Gomez

University of Cantabria

(Joint work with A. Winterhof)

The family of Dickson polynomials De(X, a) ∈ Fq[X] is defined by the following recurrence relation

De(X, a) = XDe−1(X, a)− aDe−2(X, a), e = 2, 3, . . . ,

with initial values
D0(X, a) = 2, D1(X, a) = X,

where a ∈ Fq. For background on Dickson polynomials we refer to the monograph [1].
It is easy to see that De(X, 0) = Xe, e ≥ 2.
Let g(e, q) be the smallest s such that every element of y ∈ Fq is a sum of s values of De(X, a),

y = De(u1, a) +De(u2, a) + · · ·+De(us, a), u1, u2, . . . , us ∈ Fq.

For a = 0 the problem of determining or estimating s is called Waring’s problem in Fq and has
been studied extensively in the literature, see [2] and references therein. Here we concentrate on the
special case a = 1.



The number g(e, q) doesn’t exist if the value set of De(X, 1) is a subset of a proper subfield of Fq.
Our first result characterizes the pairs (e, q) such that g(e, q) exists.

Moreover, we prove several upper bounds for g(e, q) using either bounds of exponential sums or
tools from additive number theory as the Cauchy-Davenport Theorem.
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Evaluation Codes and Complete Bipartite Graphs

Manuel González Sarabia

UPIITA-IPN, México

(Joint work with C. Renteŕıa Márquez)

Let Km,n be a complete bipartite graph. We can associate an evaluation linear code to the
incidence matrix of this graph. Our goal is to determine the main parameters of these codes (length,
dimension, minimum distance). Let X be the toric variety associated to this incidence matrix
and F be a finite field with q elements. Let F [Z00, . . . , Z(m−1)(n−1)]d be the d−graded homogenous
component of the corresponding polynomial ring. Let s = #(X) and consider the following evaluation
map

θ : F [Z00, . . . , Z(m−1)(n−1)]d → F s

θ(f) = (f(P1), . . . , f(Ps))

where X = {P1, . . . , Ps}. The evaluation code of order d, CX(d), associated to the incidence matrix
of the complete bipartite graph Km,n is the image of the last evaluation map. The following theorem
shows the main parameters of this kind of codes.

Theorem The main parameters of the evaluation code CX(d) are given by

1. Length: s = (q − 1)m+n−2

2. Dimension: dimCX(d) = HX1(d) ·HX2(d)

3. Minimum Distance: δX(d) = δX1(d) · δX2(d)

where HXi(d) and δXi(d) are the corresponding dimension and minimum distance of the generalized
Reed-Solomon codes for i = 1, 2.
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The Ring of Additive Polynomials and Weights of Cyclic Codes

Cem Güneri

Sabancı University, İstanbul

(Joint work with F. Özbudak)

Trace representation of cyclic codes relates the weights of codewords to the number of solutions
of certain equations over finite fields. Under certain assumptions on the cyclic code, these equations
define Artin-Schreier type (irreducible) curves whose number of rational points can be estimated by
the Hasse-Weil bound. Using this, Wolfmann gave a bound for the weights of a broad family of
cyclic codes. In particular, his bound applies to any cyclic code over prime finite fields. However, if
the cyclic code is defined over more general finite fields then related equations may define reducible
curves, in which case Wolfmann’s bound does not apply.

We prove the theorem below which helps us determine irreducible components of such reducible
curves. Applying the Hasse-Weil bound on the irreducible components, we can write general bounds
for the weights of any cyclic code. Our result reduces the estimation of the weights of a cyclic code
to determination of the left greatest common divisor of certain polynomials in the ring of additive
polynomials.

Theorem Let K be a perfect field of positive characteristic p and R be the ring of additive polyno-
mials in K[T ]. Let A,B1, . . . , Bt ∈ R be nonzero additive polynomials such that A is monic, separable
and splits in K. Let L(T ) be the left greatest common divisor of A,B1, . . . , Bt in R and denote by
W the set of roots of L(T ). Assume that r1, . . . , rt are distinct positive integers with gcd(p, ri) = 1,
for all 1 ≤ i ≤ t. Then,

i) The polynomial A(y)−
∑t

i=1Bi(x
ri) is irreducible over K(x) if and only if L(T ) = T .

ii) Let ◦ denote the composition operation in R. If

A(T ) = L(T ) ◦ Â(T )

Bi(T ) = L(T ) ◦ B̂i(T ),

then we have following factorization into irreducibles:

A(y)−
t∑
i=1

Bi(x
ri) =

∏
w∈W

(
Â(y)−

t∑
i=1

B̂i(x
ri)− w

)
.

On the Jacobi sum
∑
ψ(x1 · · · xt) over finite fields

S. Gurak

University of San Diego



Let q = pv, a power of a prime p, and Fq denote the finite field of q elements. For any character
ψ of F∗q, say of order s, define the special Jacobi sum

Jt(ψ) =
∑

xi∈F ∗q ,x1+···+xt=1

ψ(x1 · · ·xt).

Explicit values of Jt(ψ) are known for ψ of small order 1 ≤ s ≤ 4, but beyond that nothing seems
to be determined. Here I show how to express Jt(ψ) as a ratio of Eisenstein sums involving a power
or lift of ψ. Using known evaluations of Eisenstein sums for characters of order 6, 8 and 12, I give a
complete determination of the sums Jt(ψ) whenever s divides 8 or 12. These results can be applied
to the problem to determine the number of irreducible polynomials of fixed degree over Fq with
prescribed trace and norm lying in a specified s-power coset of F∗q.

On the number of points of Jacobian and Prym varieties

Safia Haloui

Institut de Mathématiques de Toulon

(Joint work with Yves Aubry and Marc Perret)

Let A be an abelian variety of dimension d defined over F q. Weil proved that:

(q + 1− 2
√
q)d ≤ ]A(F q) ≤ (q + 1 + 2

√
q)d.

Moreover, if JX is the jacobian of a curve X of genus g admitting a map of degree d onto P
1,

then Lachaud and Martin-Deschamps proved that:

]JX(F q) ≤ e(2g
√
e)d−1qg.

Furthermore, Perret proved that:

]JX(F q) ≤
(
q + 1 +

]X(F q)− (q + 1)

g

)g
.

Let π : Y −→ X be an unramified covering of degree 2 of smooth algebraic irreducible projective
curves defined over F q of odd characteristic. Let σ be the non-trivial involution of this covering and
σ∗ the induced involution on the jacobian JY of Y . If X has genus g ≥ 2, the Prym variety Prπ
associated to π is defined as

Prπ = Im(σ∗ − id).

It is an abelian subvariety of JY of dimension g− 1 isogeneous to a direct factor of JX in JY . Perret
proved lower and upper bounds for such abelian varieties.

Our purpose is to give improvements of these bounds on jacobian and Prym varieties.



Crosscorrelation of Legendre Sequences of Different Periods

Jing (Jane) He

Carleton University

Families of pseudorandom sequences with low cross correlation have important applications in
communications and cryptography. Among several known constructions of sequences with low cross
correlations, interleaved constructions proposed by Gong uses two sequences of the same period with
two-level autocorrelation. Recently, Wang and Qi used a similar idea to extend this construction to
Legendre sequences of period p and p+2, respectively, where both p and p+2 are primes. Moreover,
they studied the cross correlation of the interleaved sequences. In this paper, we study the cross-
correlation of interleaved sequences of two Legendre sequences of periods p and q,respectively, where
p and q are prime numbers.

Proof of a Conjecture on the Sequence of Exceptional Numbers,
Classifying Cyclic Codes and APN functions

Fernando Hernando

University College Cork and Claude Shannon Institute

(Joint work with Gary McGuire)

The sequence of numbers of the form 2i + 1 or 4i − 2i + 1 (where i ≥ 1) is

3, 5, 9, 13, 17, 33, 57, 65, 129, 241, 257, 513, 993, 1025, . . . .

This is sequence number A064386 in the On-Line Encyclopedia of Integer Sequences. It has been
known for almost 40 years that these numbers are exceptional numbers, in the sense we will define
shortly. No further exceptional numbers were found, and it was conjectured that this sequence is the
complete list of exceptional numbers. We prove this conjecture.

This conjecture arises in two different ways, from cryptography and from coding theory. In the
theory of APN (Almost Perfect Nonlinear) functions, an odd integer t ≥ 3 is said to be exceptional
if f(x) = xt is APN over F2n for infinitely many values of n. Equivalently, t is exceptional if the
binary cyclic code of length 2n − 1 with two zeros ω, ωt has minimum distance 5 for infinitely many
values of n. We prove that every exceptional number has the form 2i + 1 or 4i − 2i + 1.

Arcs in Galois ring planes invariant under a Singer cycle

Thomas Honold

Zhejiang University, Hangzhou

(Joint work with M. Kiermaier, University of Bayreuth)



Let Gq be the Galois ring of characteristic p2 and order q = pr. The incidence structure
PHG(2,Gq), whose points and lines are the free rank-one, respectively, free rank-two Gq-submodules
of G3

q and whose incidence relation is set inclusion, is called the projective Hjelmslev plane over Gq.
A (k, n)-arc in PHG(2,Gq) is a k-multiset of points meeting every line in at most n points. The
study of such arcs and their higher-dimensional analogues is motivated by the following observation
from [2, 3]: Just as in classical finite geometry, large (k, n)-arcs in projective Hjelmslev geometries
over Gq correspond to good linear codes over Gq.

We describe a method for constructing (k, n)-arcs in PHG(2,Gq) from special point sets in the
affine plane AG(2,Fq). The resulting arcs are invariant under a (lifted) Singer cycle of PHG(2,Gq).
Examples are provided by the known hyperovals in the planes PHG(2,Gq) with q even [4]. Using
the new method, we construct two new infinite families of arcs with good parameters.

References

[1] T. Honold and M. Kiermaier. Singer arcs in uniform projective Hjelmslev planes over Galois
rings. In preparation, Apr. 2009.

[2] T. Honold and I. Landjev. Linearly representable codes over chain rings. Abhandlungen aus
dem mathematischen Seminar der Universität Hamburg, 69:187–203, 1999.

[3] T. Honold and I. Landjev. Linear codes over finite chain rings. Electronic Journal of Combina-
torics, 7:Research Paper 11, 22 pp. (electronic), 2000.

[4] T. Honold and I. Landjev. On maximal arcs in projective Hjelmslev planes over chain rings of
even characteristic. Finite Fields and their Applications, 11(2):292–304, 2005.

The merit factor of binary sequence families constructed from
m-sequences

Jonathan Jedwab

Simon Fraser University

(Joint work with Kai-Uwe Schmidt)

We consider a sequence A of length n to be an n-tuple (a0, a1, . . . , an−1) for which each aj takes
the value +1 or −1. Given a sequence A of length n > 1, its aperiodic autocorrelation at shift u is
CA(u) :=

∑n−u−1
j=0 ajaj+u for 0 ≤ u < n, and its merit factor is F (A) := n2/(2

∑n−1
u=0[CA(u)]2).

The merit factor is important both practically and theoretically. The larger the merit factor of
a sequence that is used to transmit information by modulating a carrier signal, the more uniformly
the signal energy is distributed over the frequency range. The optimal value of the merit factor of
a sequence is studied in complex analysis, in statistical mechanics, and in theoretical physics and
theoretical chemistry. The asymptotic value of the merit factor is known for only a few infinite
families of sequences, including Legendre sequences and m-sequences.

We study two product constructions that were analysed in [SJP09]. A first, “negaperiodic”,
construction inputs a length n sequence and outputs a length 2n sequence. A second, “periodic”,
construction inputs a length n sequence and outputs a length 4n sequence. We show that, in the case
of an input m-sequence, both output sequences have the same asymptotic merit factor as the input



sequence at all rotations of sequence elements. A similar property was previously shown [SJP09] to
hold for input Legendre sequences. However we show by example that this property does not appear
to hold for a general input sequence.
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Parallel Multiplication, Trivial Traces, and Conjugates in Order Dividing
Extension Fields

Anna Johnston

Washington State University

An order dividing extension field has the form FP q where q divides the multiplicative order of
the base field. They occur accidentally, as in quadratic extension fields with odd characteristic,
or intentionally as in Cipolla’s algorithm for computing qth roots or in optimal extension fields for
efficient elliptic curve operations.

These extension fields have an obvious computational advantage. If γ ∈ FP is a qth non-residue
then r(x) = (xq − γ) is irreducible and FP q = FP [x]/ (r(x)). Using a two term modulus simplifies
reduction and any multiplicative computations in the field.

Order dividing extension fields have another computational advantage. The rings FP [x]/ (xq − 1)
and FP [x]/ (x2q − 1) are closely related to the representation of FP q by FP [x]/ (r(x)). The rings
FP [x]/ (xq − 1) and FP [x]/ (xq − 1) are the q and 2q discrete Fourier transform rings over FP . With
these rings, multiplication can be reduced from q2 multiplications down to 2q, or a single parallel 2q
vector multiplication.

Fast multiplication using a transform ring is not limited to order dividing extension fields. How-
ever only in order dividing extension fields can the relationship between the two term field modulus
r(x) = (xq − γ) and the ring modulus (x2q − 1) be exploited.

This research focuses on two of the benefits of this relationship.

1. Although fast multiplication is possible using the transform ring, the computation saved is often
wasted by the required field reduction. Using the relationship between r(x) and (x2q − 1),
a field reduction algorithm within the ring was designed which requires only (q + 1) vector
multiplications.

2. Field elements in their transformed state have the property that their conjugates are simply
its cyclic shifts. A field element and all its conjugates can therefore be represented as a single
cyclicly ordered list of q elements in FP . These conjugate sets were examined in relation to
their trace and minimal polynomials.



The maximum number of rational points on plane curves over a finite field

Seon Jeong Kim

Gyeongsang National University

(Joint work with Masaaki Homma)

We consider the number of points on a curve C of degree d in the projective plane P2 over a
finite field Fq. We denote by C(Fq) the set of all Fq-rational points of C. We are interested in the
cardinality Nq(C) of the set C(Fq). We suppose that our curve C contains no Fq-line as a component.
Let Mq(d) be the maximum among the numbers in {Nq(C) | C ∈ Cd(Fq)}, where Cd(Fq) is the set of
all plane curves over Fq of degree d without an Fq-line as a component.

We have an obvious bound Mq(d) ≤ q2 + q + 1, since C(Fq) ⊆ P2(Fq), where P2(Fq) denotes the
set of all Fq-points of P2.

In [1], we proved that Mq(d) = q2 + q + 1 for any d ≥ q + 2.
In [2], Sziklai stated a conjecture

Mq(d) ≤ (d− 1)q + 1.

Note that Mq(2) = q + 1 is well-known.
In [1], we proved that the conjecture holds for d = q+1, and that it does not hold when d = q = 4.
In this talk, we prove that Sziklai’s conjecture holds for the cases d = q with q ≥ 5. We prove

the inequality Mq(q) ≤ (q − 1)q + 1 using algebraic and combinatorial methods and then construct
a curve with exactly (q − 1)q + 1 Fq-rational points.

Also, we prove the inequality Nq(C) ≤ (d− 1)q + 1 for any nonsingular plane curve for degree d
with 2 ≤ d ≤ q − 1.
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Lower Bounds on Distances of Improved Two-Point Codes

Radoslav Kirov

University of Illinois, Urbana-Champaign

(Joint work with I.Duursma)

Improved algebraic geometric codes, due to a construction by Feng and Rao, improve on classical
algebraic geometric codes by selectively adding parity checks. Parity checks are added only if needed
to achieve a given designed distance. We extend and improve the Feng-Rao method for one-point
codes to arbitrary codes. We apply our method to two-point codes on the Hermitian and Suzuki
curves. For the Hermitian curve the obtained bounds are sharp. They improve classical two-point
codes, studied by Homma and Kim, as well as improved one-point codes, studied by Bras-Amorós
and O’Sullivan.
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Commutative semifields via Dembowski-Ostrom polynomials

Pamela Kosick

University of Delaware

(Joint work with Robert Coulter)

A finite semifield is a non-associative division ring. Three sets associated with a semifield are
the left, middle and right nuclei, the sets of elements from the semifield that associate on the left,
middle or right, respectively. Semifields can be viewed as (one sided) vector spaces over any of
their nuclei. However, historically they have been studied in terms of their equivalent notion in
projective geometry, that of Lenz-Barlotti type V planes, a special class of translation planes. Our
approach is purely algebraic; we study finite commutative semifields via polynomials over finite fields.
Specifically, finite commutative semifields of odd order are in a one-to-one correspondence with planar
Dembowski-Ostrom (DO) polynomials. Using this approach we give a partial classification of finite
commutative semifields of order 35 and discuss the connections between finite commutative semifields
and some combinatorial structures.

On a class of permutation polynomials

Gohar Kyureghyan

Otto-von-Guericke University of Magdeburg

(Joint work with Pascale Charpin)

We study permutation polynomials of the shape G(X) + γTr(H(X)) in Fqn [X], where Tr(X) =
X + Xq + . . . + Xqn−1

is the polynomial describing the relative trace mapping from Fqn onto its
subfield Fq. We introduce several families of such permutation polynomials. In particular our results
imply:

Theorem Let γ, β ∈ Fqn and H(X) ∈ Fqn [X].

(i) Then the polynomial
F (X) = X + γ Tr

(
H(Xq − γq−1X) + βX

)
is a permutation polynomial if and only if Tr(βγ) 6= −1.



(ii) Then the polynomial

F (X) = X + γ Tr

∑
u∈Fq

H(X + uγ) + βX


is a permutation polynomial if and only if Tr(βγ) 6= −1.

We show also that the associated mappings to the polynomials from the above theorem are p - to - 1
if Tr(βγ) = −1. Further we determine the inverse and the cycle structure of such a permutation.
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Inner metric bounds on the minimal Euclidean distance for arbitrary
q-ary block codes

Efraim Laksman

Blekinge Institute of Technology

(Joint work with H. Lennerstad and M. Nilsson)

In this line of research general bounds on the minimal Euclidean distance for PSK block codes
have been established as explicit functions of the code size |C|, block length n and alphabet size
q. For several values of |C|, n and q, the bounds are optimal in the sense that there are known
codes that fulfil the bound with equality, proving that these codes are the best possible. The bounds
characterize a geometrical property of any subset of Zn

q : maximizing the minimal distance between
two words in a subset C of Zn

q .
In all reports in this research, the problem is localized to an Elias sphere. Code words in an

Elias sphere are written as rows in a matrix, and the results rely on finding worst case columns of
this matrix. Limited to the case q = 8 the method has in recent papers adopted a more general
approach: to consider a general inner metric inside the Elias sphere, and optimizing this metric to
derive sharper bounds for the outer metric, which is Euclidean.

The present paper generalizes this approach to arbitrary q, while using q = 6, 7 and 9 as illus-
trating examples. It turns out that it is possible to find restrictions to worst case columns of an Elias
sphere for general q.
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Blocking Sets of Rédei Type in Coordinate Geometries over Finite Chain
Rings

Ivan Landjev

New Bulgarian University

Let R be a chain ring, |R| = qm, R/ rad R ∼= Fq, and let Π = PHG(R3
R) be the (right) coordinate

projective Hjelmslev plane over R. A (k, n)-blocking set in Π is defined as a set K with |K| = k,
|K ∩ L| ≥ n for any line L, and |K ∩ L0| = n for at least one line L0.

As in the classical case of projective planes over finite fields, the smallest (k, 1)-blocking set is a
line and its cardinality is k = qm−1(q + 1). In case of chain rings R with |R| = q2, R/ rad R ∼= Fq,
the size of the second smallest irreducible (k, 1)-blocking set is q2 + q+ 1. All blocking sets with this
cardinality can be characterized. It turns out that if char R = p there exist (up to isomorphism)
two such sets. One of them is the Baer subplane and is not trivial in the sense that its image under
the canonical epimorphism is not contained in a line. If char R = p2 we have only trivial irreducible
(q2 + q + 1, 1)-blocking sets. This raises the question of the construction of nontrivial blocking sets
in planes over the Galois rings GR(q2, p2).

The goal of this talk is to introduce Rédei type blocking sets in projective Hjelmslev planes over
finite chain rings. In Hjelmslev planes over chain rings of nilpotency index 2 that contain the residue
field as a proper subring, we construct the Baer subplanes associated with this subring as Rédei type
blocking sets. For planes over Galois rings, two further examples of Rédei type blocking sets are
given generalizing familiar constructions in projective planes over finite fields.

Algebraic continued fractions in fields of power series over a finite base
field

Alain Lasjaunias

University of Bordeaux

Given a finite field Fq, we consider power series in Fq((T
−1)) which are algebraic over Fq(T ).

In the case of algebraic real numbers the continued fraction expansion of an element is explicitely
known if and only if this element is quadratic. In the case of power series over a finite field, due to
the existence of the Frobenius isomorphism, the continued fraction expansion of an algebraic element
may be explicitely given for many examples which are not quadratic. Indeed there exists a class of
algebraic power series, called hyperquadratic, which for different reasons should be compared to the
class of quadratic real numbers. In this talk we resume the properties of these algebraic elements
and we present some explicit continued fraction expansions which have connections with recurrent
sequences in a finite field.
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On monomial graphs of girth eight

Felix Lazebnik

University of Delaware

(Joint work with V. Dmytrenko and J. Williford)

Let e be a positive integer, p be a odd prime, q = p e, and Fq be the finite field of q elements.
Let f2, f3 ∈ Fq[x, y]. The graph G = Gq(f2, f3) is a bipartite graph with vertex partitions P = F3

q

and L = F3
q, and edges defined as follows: a vertex (p) = (p1, p2, p3) ∈ P is adjacent to a vertex

[l] = [l1, l2, l3] if and only if

p2 + l2 = f2(p1, l1) and p3 + l3 = f3(p1, l1).

Motivated by some questions in finite geometry and extremal graph theory, we ask when G has no
cycle of length less than eight, i.e., has girth at least eight. When f2 and f3 are monomials, we
call G a monomial graph. We show that for p ≥ 5, and e = 2a3b, a monomial graph of girth at
least eight has to be isomorphic to graph Gq(xy, xy

2), which is an induced subgraph of the classical
generalized quadrangle W (q). For all other e, we show that a monomial graph is isomorphic to a
graph Gq(xy, x

ky2k), with 1 ≤ k ≤ (q − 1)/2 and satisfying several other strong conditions. These
conditions imply that k = 1 for all q ≤ 1010. In particular, for a given positive integer k, graph
Gq(xy, x

ky2k) can be of girth eight only for finitely many odd characteristics p.

Double recurrence in finite fields and algebraic sets

Akos Magyar

University of British Columbia

(Joint work with Brian Cook)

Motivated by ergodic theory, we call a set S ⊂ Fn, F being a finite field of q elements, a set of
double recurrence; if for every set A ⊂ Fn of density α = |A|/qn there exists an s ∈ S (s 6= 0), such
that |A∩ (A+ s)∩ (A+ 2s)| ≥ c(α) qn. Here c(α) is a positive number depending only on the density
α.

We show that if S is an algebraic set, defined by a family of polynomials, such that the locus of
the singular points of S has sufficiently large codimension with respect to α, then S is a set of double
recurrence.

The proof uses some basic notions from additive combinatorics, such as that of quadratic uni-
formity, and elementary methods for counting the solutions of certain linear equations in algebraic
sets.



Symplectic Spreads and Commutative Semifields

Giuseppe Marino

Seconda Università degli Studi di Napoli

(Joint work with Guglielmo Lunardon, Olga Polverino and Rocco Trombetti)

In this paper we face with the problem of constructing semifield spreads of projective spaces. To
this aim we study the relationship between linear sets disjoint from the secant variety of a Segre
variety Sn,n of PG(n2− 1, q) and semifield spreads of PG(2n− 1, q) (see [2], [1] and [3]), focusing on
the symplectic case. We prove that a semifield spread is symplectic if and only if the associated linear
set is contained in a subspace of PG(n2 − 1, q) intersecting Sn,n in a quadric Veronesian. Moreover,
for q odd, starting from a symplectic semifield spread S of PG(5, q) we construct another symplectic
semifield spread of PG(5, q) called the symplectic dual of S. Finally, we exhibit a new example of
symplectic semifield spread of PG(5, q2), q odd, and, using the Knuth cubical array, we determine
the associated commutative semifield of order q6.
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On the nonexistence of some q-ary linear codes meeting the Griesmer
bound

Tatsuya Maruta

Osaka Prefecture University

(Joint work with Noboru Hamada)

Let Fnq denote the vector space of n-tuples over the field of q elements Fq. A k-dimensional
subspace of Fnq is called a q-ary linear code of length n with dimension k, or an [n, k]q code. An
[n, k, d]q code is an [n, k]q code with minimum Hamming distance d. A fundamental problem in
coding theory is to find nq(k, d), the minimum length n for which an [n, k, d]q code exists. There is
a natural lower bound on nq(k, d), called the Griesmer bound:

nq(k, d) ≥ gq(k, d) :=
k−1∑
i=0

⌈
d

qi

⌉
, (3)

where dxe denotes the smallest integer greater than or equal to x. It is known for all q that the
equality in (1) holds for all d when k = 1, 2 and for d ≥ (k − 2)qk−1 − (k − 1)qk−2 + 1 when k ≥ 3,
see [1]. As for the case when d = (k − 2)qk−1 − (k − 1)qk−2, the following is known.



Theorem ([2]) For d = (k − 2)qk−1 − (k − 1)qk−2, it holds that nq(k, d) ≥ gq(k, d) + 1 for q ≥ k
when k = 3, 4, 5 and for q ≥ 2k − 3 when k ≥ 6.

We conjecture that the condition “q ≥ 2k− 3” for k ≥ 6 could be improved to “q > (3k− 6)/2”.
We shall show some results which corroborates our conjecture.
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Riemann-Roch spaces of the norm-trace function field

Gretchen L. Matthews

Clemson University

(Joint work with Justin Peachey)

The norm-trace function field over the finite field Fqr is given by
Fqr(x, y)/Fqr where NFqr/Fq (x) = TrFqr/Fq (y), that is, the norm of x is equal to the trace of y
with respect to the extension Fqr/Fq. It is a generalization of the Hermitian function field over Fq2 ,
which is obtained when r = 2. The norm-trace function field has q2r−1 + 1 places of degree one,
including qr−1 places P0b and a single place at infinity P∞. In this talk, we discuss explicit bases
for Riemann-Roch spaces L (a0P∞ + a1P0b1 + · · ·+ amP0bm) where 1 ≤ m ≤ qr−1 and determine the
Weierstrass semigroups of (m+ 1)-tuples of the form (P∞, P0b1 , . . . , P0bm).

On the calculation of the linear complexity of un-periodic sequences

Wilfried Meidl

Sabanci University Orhanli

(Joint work with Hassan Aly, Radwa Marzouk)

In [IEEE Trans. Inform. Theory 52 (2006), 5537–5539] H. Chen showed how to reduce the
calculation of the linear complexity of a un-periodic sequence over a finite field Fpm to the calculation
of the linear complexities of u sequences of period n over Fpm , under the condition that u divides
pm − 1. In W.Meidl [DCC 46 (2008), 57–65], the main theorem of Chen has been combined with
some further observations to point out how the condition that u divides pm − 1 can be dropped.
This makes it possible to apply Chen’s result to sequences over small fields like to the important
case of binary sequences. W. Meidl (2008) applied then Chen’s result to construct algorithms for
determining the linear complexity of u2v-periodic binary sequences, u odd. Concrete algorithms were
presented for u = 3, 5, 7, 15.



This presentation provides a more general approach: Based on a slight generalization of Chen’s
theorem and some results on multisequences we prove a general theorem that shows how to reduce
the calculation of the linear complexity of a un-periodic sequence over a finite field Fp to a certain
number of n-periodic sequences over Fp, without the strong condition that u divides p− 1. Instead,
p, u, n solely have to satisfy the following conditions:

(I) There exists an integer m for which u|pm − 1 and gcd(pm − 1, n) = 1,

(II) if n = (char(Fp))rT , r ≥ 0, gcd(p, T ) = 1, and l is the order of p modulo T , then gcd(l,m) = 1.

Similarly to the result of Chen, our result can be combined with fast algorithms for n-periodic
sequences known for certain integers n. As examples we discuss algorithms for binary sequences of
period un with n = 2n, and un-periodic sequences over a prime field Fp with n = qv where q is
a prime for which p is a primitive root modulo q2. For simple concrete examples one may choose
u = 3, 5, 7, 15 in the first case, in which one then obtains improvements of the algorithms of W. Meidl,
DCC (2008). In the second case for p = 2 for instance the pairs (u, q) = (7, 5), (7, 11), and for p = 3
the pairs (u, q) = (13, 5), (13, 17) and (2, q) for an arbitrary prime q for which 3 is a primitive root
modulo q2 satisfy the conditions (I), (II). Thus one can easily generate corresponding new algorithms
for the linear complexity.

Equicharacteristic Galois representations of local function fields

Carl A. Miller

University of Michigan, Ann Arbor

The purpose of this talk is to present an equicharacteristic version of the Swan conductor.
Let G be the absolute Galois group of the field Fpr((t)), where p is prime. Let I be the inertia

subgroup of G, and let P be the largest pro-p-subgroup of I. Representations of G tend to be
complex because P is large and nonabelian. Suppose that φ : G → Aut((F`)n) is a representation,
where ` denotes a prime different from p. The Swan conductor of φ measures the higher ramification
of φ (i.e., the extent to which P acts nontrivially on (F`)n).

Now suppose that ψ : G → Aut((Fp)n) is an equicharacteristic representation. The definition of
the Swan conductor cannot be carried over to this case. (The definition of the Swan conductor of φ
relies on the fact that the representation φ|P is semisimple. This is not true of ψ|P .) However in this
talk I will define a different invariant, the “minimal root index,” which measures the ramification of
an equicharacteristic representation.

The minimal root index serves a similar role to the Swan conductor in the subject of étale
cohomology. Whereas the Swan conductor helps us to count Q`-étale cocycles on characteristic-p
curves, the minimal root index helps us count Qp-étale cocycles on characteristic-p curves.

Division Polynomials for Twisted Edwards Curves

Richard Moloney

University College Dublin and Claude Shannon Institute

(Joint work with Gary McGuire)



The famous last entry in the diary of Gauss concerns the curve with equation

x2 + y2 + x2y2 = 1 (4)

and its rational points over Fp.
The idea of division polynomials on a curve with a group law on its points, is that we try to write

down a formula for [n]P in terms of the coordinates of P , where [n]P denotes P added to itself n
times under the group law. In some unpublished work, discovered after his death and subsequently
published, Gauss wrote down such formulae for the curve (4), see Figure 1. Surprisingly, his formulae
are not correct, although they are very close to being correct. In this paper we shall give the correct
version, in the general context of twisted Edwards curves, of which (4) is a special case. We discuss
work of Gauss and Eisenstein on the lemniscatic sine function.

Edwards [1] introduced an addition law on the curves x2 + y2 = c2(1 + x2y2) for c ∈ k, where k
is a field of characteristic not equal to 2. He showed that every elliptic curve over k is birationally
equivalent (over some extension of k) to a curve of this form.

In [2], Bernstein and Lange generalised this addition law to the curves x2 + y2 = 1 + dx2y2 for
d ∈ k \ {0, 1}. More generally, they consider x2 + y2 = c2(1 + dx2y2), however, any such curve is
isomorphic to one of the form x2 + y2 = 1 + d′x2y2 for some d′ ∈ k, so we will assume c = 1. These
curves are referred to as Edwards curves. Bernstein and Lange showed that if k is finite, a large
class of elliptic curves over k (all those which have a point of order 4) can be represented in Edwards
form. The case d = −1 gives the curve (4) considered by Gauss.

In [3], Bernstein et al. introduced the twisted Edwards curves ax2 + y2 = 1 + dx2y2 (where
a, d ∈ k are distinct and non-zero) and showed that every elliptic curve with a representation in
Montgomery form is birationally equivalent to a twisted Edwards curve. Obviously, the case a = 1
of a twisted Edwards curve is an Edwards curve.

In this paper we describe a sequence of rational functions, and consequently a sequence of poly-
nomials, defined on the function field of a twisted Edwards curve which are analogous to the division
polynomials for elliptic curves in Weierstrass form. In particular, these polynomials characterise
the n-torsion points of the twisted Edwards curve for a positive integer n. These twisted Edwards
division polynomials are polynomials in y with coefficients in Z[a, d], and have degree in y less than
n2/2.
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A new construction of cyclic relative difference families and related optical
orthogonal codes



Koji Momihara

Nagoya University

Let H be a subgroup of order h of a finite group G of order v. A family of s ki-subsets Ai,
1 ≤ i ≤ s, of G is called a (v, h, {ki | 1 ≤ i ≤ s}, λ) difference family (DF) over G relative to H if the
list

{a− b | a, b ∈ Ai; a 6= b; 1 ≤ i ≤ s}

of differences contains every element of G−H exactly λ times but no element of H.
In this talk, we consider the case when G is cyclic and we identify G with Zv = Z/vZ, the residue

ring of rational integers modulo v. In this case, the subgroup H of order h is uniquely determined
and hence we simply call the family as a cyclic (v, h, {ki | 1 ≤ i ≤ s}, λ)-DF. A new series of such
difference families is obtained by using the trace function and the logarithm function over a finite
field. The following is our main theorem:

Theorem Let q be a prime power and let n and m be positive integers satisfying gcd (n,m) = 1
and n | q − 1. Let e be a positive integer such that gcd (e, n) = 1. Then, there exists a cyclic

( q
m−1
n
, q−1

n
, {ki | 1 ≤ i ≤ q−1

e
}, q

m−2(q−1)
en

)-DF, where each ki is bounded by

qm−1 − (n− 1)q
m−1

2

n
≤ ki ≤

qm−1 + (n− 1)q
m−1

2

n
.

Further, in relation to the theorem above, we also get a new family of optimal (v, k, 1, 1) optical
orthogonal codes.
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Duality for poset codes

Allan O. Moura

State University of Campinas

(Joint work with M. Firer)

Let Fnq be an n-dimensional vector space over the field Fq and P = ([n] ,�P ) a partial order (poset)
on the set of coordinates of Fnq , [n] = {1, 2, ..., n}. The P -weight wP of v is wP (v) = |〈supp (v)〉| ,
where supp (v) = { i ; vi 6= 0}, 〈A〉 is the smallest ideal of P containing A and |X| is the cardinality
of X. The P -weight defines a P -distance dP (u, v) := wP (v − u) that generalizes the usual Hamming
metric and the pair

(
Fnq , dP

)
is called a P -space. The study of error correcting codes in P -spaces,

using the P -distance to define the metric invariants (such as weight hierarchy), started with works
of Niederreiter [2] and Brualdi [1] and since then it is being developed in a way similar to that of
classical Hamming spaces. Using multiset techniques, we generalize Wei’s Duality Theorem [3] to
P -spaces:



Theorem (Duality) Let C be an [n, k]q P -code and C⊥ the orthogonal code. Then the sets X =

whP (C) =
{
dP1 (C) , dP2 (C) , ..., dPk (C)

}
and Y =

{
n+ 1− dP1

(
C⊥
)
, n+ 1− dP2

(
C⊥
)
, ..., n+ 1− dPn−k

(
C⊥
)}

are disjoint and X ∪Y = {1, 2, ..., n} , where P is the dual order of P , dPi (C) and dPi
(
C⊥
)

are Wei’s

i-th P and P weight of the codes C and C⊥ respectively.

From this result we derive some consequences relating the discrepancy and the chain property of
a code C with the ones of its orthogonal C⊥.
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Dickson Polynomials over Finite Fields: A Different Perspective

Gary L. Mullen

The Pennsylvania State University

If a ∈ Fq, the finite field of order q, the Dickson polynomial of degree n and parameter a is defined
by

Dn(x, a) =

bn/2c∑
i=0

n

n− i

(
n− i
i

)
(−a)ixn−2i.

Dickson polynomials over finite fields have many very interesting properties. Some of these
properties are related to questions of permutations of finite fields. For example, it is well known that
if a ∈ F ∗q , then Dn(x, a) induces a permutation on the field Fq if and only if (n, q2 − 1) = 1.

In previous work, the parameter a has been fixed and the variable x then runs through the field
Fq. In the current work, we reverse these roles, and fix x ∈ Fq, and then allow a to run through
the elements of the field Fq. We will discuss some results concerning the permutational properties of
these “reversed Dickson polynomials.”It appears that once again, we have an interesting, though far
from completely understood, class of polynomials. For example, these reversed Dickson polynomials
lead to results concerning APN functions.

This is joint work with Xiang-dong Hou (S. Florida), James Sellers (Penn State) and Joseph
Yucas (Southern Illinois).



Error-Block Codes and Poset Metrics

Marcelo Muniz S. Alves

Universidade Federal do Paraná

(Joint work with L. Panek and M. Firer)

In 1997 Niederreiter introduces a generalization of one of the main problems of coding theory,
the problem of finding k-dimensional subspaces in Fnq with the largest possible minimum distance,
in terms of maximizing sets of vectors in Fn−kq subject to some restrictions. In order to rewrite this
question in terms of a metric, Brualdi, Graves and Lawrence introduced in [2] the concept of a poset
metric. In brief, to each poset P = ({1, 2, . . . , n},≤) there corresponds a weight ωP on Fnq , the
Hamming weight being one of these. Some of the new problems put by this family of metrics are:
(i) the classification of perfect codes; (ii) the description of the automorphisms and symmetries of
each metric spaces; (iii) the inverse problem of fixing a code and classifying which metrics render
this code perfect.

Another generalization of the classic Hamming distance was recently proposed by Feng, Xu and
Hickernell, the so-called π-distance (or π-metric). We have obtained a construction that unites both
kinds of metrics; we call it a poset block metric .

We give a complete description of the groups of linear isometries of these metric spaces in terms
of a semi-direct product, which turns out to be similar to the case of poset metric spaces. We also
describe poset block structures which turn the extended binary Hamming codes and the extended
Golay code into perfect codes.
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Measures on quantum logics of idempotents matrices over finite fields

Daniar Mushtari

Kazan State University

Quantum logics are generalizations of Boolean algebras. They are orthomodular partially ordered
sets with the least, 0, and the greatest, 1, elements. The set P(M) of all idempotents in an algebra
M with unit is a quantum logic. Two elements, P and Q, in such a quantum logic are said to be
orthogonal iff PQ = QP = 0. Signed measures µ : P(M)→ R are defined by the relation

µ

(∨
n

Pn

)
=
∑
n

µ(Pn) (5)



for any sequence of pairly orthogonal elements. The well-known Gleason theorem [1] asserts that
every nonnegative measure µ on the quantum logic Π(H) of all projections (Hermitian idempotents)
on a Hilbert space H, dimH > 2, admits representation

µ(P ) = tr(TP ) for all P ∈ Π(H). (6)

The author had proved [2] such representation for the signed measures on the quantum logics of all
continuous idempotents on a Hilbert space or of all rational idempotent n× n-matrices, dimH > 2.
The proof of the second theorem used some computer calculations. The analogical presentation for
F2-valued measures on the set of all idempotent n × n-matrices with values in the field F4 used
some computer calculations, too [3]. We will sketch a new proof of this result without computer
calculations as well as some problems and results concerning representations of Fp-valued measures
on the set of Fps-valued idempotent matrices where p is a prime and s is a natural.
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On the number of generalized quadratic APN functions

Nobuo Nakagawa

Kinki University

Generalized quadratic APN functions was defined by S.Yoshiara. Let F and R be vector spaces
over GF (2). A function f from F to R is called almost perfect nonlinear if ]{x ∈ F | f(x+a)+f(x) =
b } ≤ 2 for every a ∈ F× and every b ∈ R. EA-equivalence of two APN functions from F to R is
defined similarly as that of APN functions on GF (2n). A function f from F to R is called quadratic
if f(x+ y+ z) + f(x+ y) + f(y+ z) + f(z+x) + f(x) + f(y) + f(z) + f(0) = 0 for all elements x, y, z
of F. Define as bf (x, y) = f(x + y) + f(x) + f(y) + f(0). We denote the alternating tensor product
of F by F ∧F. A subspace W of F ∧F is called a nonpure subspace if W ∩{x∧ y| x, y ∈ F } = {0}.

Theorem (S.Yoshiara) Let {e1, e2, · · · , en} be a basis of F, a map γ be a linear function from
F ∧ F onto R such that Ker(γ) is a nonpure subspace and a map α be an affine map from F
to R. Then the function f := fγ,α defined by the following formula is a quadratic APN function.
f(
∑n

i=1 xiei) :=
∑

0≤i<j≤n xixj(ei∧ej)γ+(
∑n

i=1 xiei)
α. Conversely, for every quadratic APN function

f from F to R such that bf is surjective, there is a uniqe pair (γ, α) satisfying f = fγ,α where γ is a
linear map from F ∧ F to R such that Ker(γ) is a nonpure subspace and α is an affine map from F
to R.

An automorphism g ∈ GL(F ) induces an automorphism ĝ of F ∧F defined as ĝ(
∑
ai,jei ∧ ej) :=∑

ai,jg(ei) ∧ g(ej). Put Ĝ := { ĝ | g ∈ GL(F )}. For subspaces W1,W2 of F ∧ F , we define W1 is

Ĝ-equivalent to W2 iff W2 = ĝ(W1) for an automorphism g ∈ GL(F ).



Theorem Suppose that f and g are quadratic APN functions from F to R such that f = fγ,α and
g = fγ′ ,α′ for γ, γ

′
are linear maps from F ∧ F to R whose kernels are nonpure subspaces and α, α

′

are affine maps from F to R. Then f is EA-equivalent to g iff Ker(γ) is Ĝ-equivalent to Ker(γ
′
).

We can calculate the explicit inequivalent number of quadratic APN functions from F to R for
dim(R) = n(n−1)

2
− i and i = 0, 1, 2 from theorem 1 and theorem 2, moreover the explicit inequivalent

number of quadratic APN functions on GF (2n) by counting nonpure subspaces of GF (2n)∧GF (2n)

with dimension n(n−3)
2

for n = 3, 4, 5, probably n = 6.

Folded Algebraic Geometric Codes from Galois Extensions

Anand Kumar Narayanan

University of Southern California

(Joint work with Ming-Deh Huang)

We describe a new class of list decodable codes based on Galois extensions of function fields and
present a list decoding algorithm. These codes are obtained as a result of folding the set of rational
places of a function field using certain automorphisms from the Galois group of the extension. This
work is an extension of Folded Reed Solomon codes to the setting of Algebraic Geometric codes. We
describe two constructions based on this framework depending on if the order of the automorphism
used to fold the code is large or small compared to the block length. When the automorphism is
of large order, the codes have polynomially bounded list size in the worst case. This construction
gives codes of rate R over an alphabet of size independent of block length that can correct a fraction
of 1 − R − ε errors subject to the existence of asymptotically good towers of function fields with
large automorphisms. The second construction addresses the case when the order of the element
used to fold is small compared to the block length. We describe a decoding algorithm by reducing it
to a root finding problem over the local completion at a place where the automorphism acts as the
Frobenius. In this case, with a heuristic analysis we argue that the list size and the running time
of the decoding algorithm are bounded by a polynomial in the block length. The heuristic is that a
certain multivariate polynomial induced by the received word and the decoding algorithm is not of
a very special form. When applied to the Garcia-Stichtenoth tower, this yields codes of rate R over
an alphabet of size ( 1

ε2
)O( 1

ε
), that can correct a fraction of 1−R− ε errors. If the worst case list size

bound can be proven without this heuristic, this construction leads to explicit codes over a constant
alphabet achieving the list decoding capacity. This work is a step towards that goal.
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An upper bound for the number of certain f - sequences

J. Eurico Nogueira

Universidade Nova de Lisboa

(Joint work with Owen J. Brison, Universidade de Lisboa)

Let F ⊆ L be finite fields and let f(t) = t2−σt−ρ ∈ F[t], ρ 6= 0. An f -sequence in L is a sequence
(µi)i∈Z where µi ∈ L such that µi+2 = σµi+1 + ρµi for all i. An f -subgroup is a subgroup M =
{s0, · · · , s|M |−1} ≤ L∗ such that M may be written as an f -sequence (· · · , s0 = 1, s1, . . . , s|M |−1, · · · )
of least period |M |. In this situation we say that (si)i∈Z represents M .

Here, for certain special cases, we give an upper bound on the number of ways it is possible to
write given subgroups as f -sequences.

Results in [1] and [2] imply:

Theorem Let p be an odd prime and n ∈ N. Let f(t) ∈ Fpn be irreducible of degree 2 with
restricted period pk + 1 where k is a proper divisor of n such that n/k is odd. Let M ≤ Fp2n be an
f -subgroup of order m. Then M admits at least pk(pk − 1) representing f -sequences.

We prove

Theorem Let p be an odd prime and n ∈ N. Let f(t) ∈ Fpn be irreducible of degree 2 with
restricted period pk + 1 where k is a proper divisor of n such that n/k is odd. Let M ≤ Fp2n be an
f -subgroup of order m. Then M admits at most pk(pk − 1) representing f -sequences.
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The Number of Irreducible Polynomials of Degree n over Fq with Given
Trace and Constant Terms

Behzad Omidi Koma

Carleton University

(Joint work with D. Panario, and Q. Wang)
The problem of estimating the number of irreducible polynomials of degree n over the finite field

Fq with some prescribed coefficients has been largely studied. In particular, several interesting results
have been obtained for the number of irreducible polynomials of degree n over Fq with any given
trace and any arbitrary constant term. We use elementary techniques to study the largest number of
irreducible polynomials of degree n with given trace and constant terms, and give bounds of it. We
also obtain a simple and precise formula for the number of irreducible polynomials of degree q − 1
over Fq with given primitive constant term.
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Finite Field Multiplication via Number-Theoretic Transforms

Edusmildo Orozco

University of Puerto Rico at Rio Piedras

(Joint work with D. Bollman and E. Ferrer)

The convolution theorem can be used to reduce the number of operations needed to multiply two
m-degree polynomials over the field of complex numbers from O(m2) to O(m logm). It is thus natural
to apply the same technique to the multiplication of elements in a finite field GF (pm) represented
in the polynomial basis. However, the problem in GF (pm) is that there is a second step, namely
reduction modulo the irreducible polynomial that defines the field.

In this work we show that for a certain family of finite fields GF (pm), multiplication, including
the reduction step, can be expressed in terms of convolution, thus reducing the number of operations
from O(m2) to O(m logm). This result is achieved by showing that a variant of the Mastrovito matrix
can be embedded in a circulant matrix and then using the fact that the product of a circulant matrix
and a vector can be expressed as a convolution.
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Interval Partitions and Polynomial Factorization

Daniel Panario

Carleton University

(Joint work with Joachim von zur Gathen and Bruce Richmond)

The fastest algorithms for factoring a univariate polynomial f of degree n over a finite field use
a baby-step/giant-step approach. The set {1, . . . , n} of potential factor degrees is partitioned into
intervals. In a first stage, for each interval the product of all irreducible factors with degree in the
interval is determined, generalizing the method of Cantor and Zassenhaus. In a second stage, each
polynomial corresponding to a multi-factor interval (that is, an interval containing two or more
irreducible factors) is completely factored.

The goal in this work is to analyze the behavior of this algorithm on uniformly random squarefree
input polynomials, for various partitions. To this end, we study several parameters such as:

• the expected number of multi-factor intervals,

• the expected number of irreducible factors with degrees lying in multi-factor intervals,

• the number of gcds executed in the factoring process,

• the expected total degree among the irreducible factors with degrees in multi-factor intervals,
and

• the probability of a polynomial having no multi-factor interval.

We concentrate on partitions with polynomially growing interval sizes, and determine the partition
that minimizes the expected number of gcds.

Paley partial difference sets in groups of order n4 and 9n4 for all odd n

John Polhill

Bloomsburg University of Pennsylvania

A partial difference set with parameters (v, v−1
2
, v−5

4
, v−1

4
) is said to be of Paley type. In this

presentation we give a recursive theorem that, for all odd n, constructs Paley partial difference sets
in certain groups of order n4 and 9n4. The theorem makes use of building sets constructed using the
structure of the fields GF (p4t) for an odd prime p and any positive integer t. These are the same
building sets used in the construction of Hadamard (Menon) difference sets. The main result is as
follows:

Theorem Let G = Zp1
4t1 × Zp2

4t2 × Zp3
4t3 × · · · × Zpk

4tk and G′ = Z3
2 × Zp1

4t1 × Zp2
4t2 × Zp3

4t3 ×
· · · × Zpk

4tk where the pi are odd primes and ti are positive integers. Then G and G′ both contain
Paley partial difference sets.

We are also able to construct Paley-Hadamard difference sets of the Stanton-Sprott family in
groups of order n4(n4 ± 2) when n4 ± 2 is a prime power and 9n4(9n4 ± 2) when 9n4 ± 2 is a prime
power. These are new parameters for such difference sets.



Minimum Polynomials and Trace Forms for Cyclic Extensions

Rachel Quinlan

National University of Ireland, Galway

Let L/K be a cyclic Galois extension (for example any extension of finite fields) of degree n, with
Galois group generated by σ. From Artin’s theorem on linear independence of characters it follows
that every K-linear endomorphism of L has a unique expression of the form

a0id + a1σ + · · ·+ an−1σ
n−1.

Thus theK-linear endomorphisms of L can be identified with “polynomial-type” expressions of degree
at most n − 1 in σ. If p(σ) is such an expression, we show that the kernel of the endomorphism
corresponding to p(σ) is at most equal to the degree of p(σ). Furthermore, if V = 〈a1, a2, . . . ak〉, we
show that up to multiplication by an element of L× there is a unique polynomial of degree k in σ
that annihilates exactly V . Such a polynomial is given by

mV (σ) = det


a1 a2 . . . ak id

σ(a1) σ(a2) . . . σ(ak) σ
...

...
...

...
σk(a1) σk(a2) . . . σk(ak) σk


Thus mV (σ) may be considered to be a minimum polynomial for the K-subspace V of L. We will
show that if f(σ) is any polynomial annihilating V , then f(σ) is a left multiple of mV (σ) in the
K-endomorphism ring of V .

The trace form on L is the nondegenerate symmetric form τ defined by τ(x, y) = TraceL/K(xy).
If T denotes the kernel of the trace mapping from L to K, then T is a K-hyperplane of L, and the
orthogonal complement of the K-subspace V = 〈a1, a2, . . . , ak〉 of L can be described as follows as
the intersection of k hyperplanes of L :

V ⊥ =
k⋂
i=1

a−1
i T.

If W is a subspace of L of codimension m, and W is described as above as the intersection of m K-
hyperplanes of L, we can use this description to describe an alternative construction for the minimum
polynomial mW (σ) of W . By comparing the two polynomial constructions, we can give an explicit
description of the orthogonal complement with respect to the trace form of a given K-subspace of L.

On Maximal Curves

Luciane Quoos

Universidade Federal do Rio de Janeiro

(Joint work with M. Abdon and J. Bezerra)



In the last twenty years, curves over Finite Fields have been studied intensely, due in part to their
application to coding theory coming from Goppa’s construction of codes arising from algebraic curves.
A projective nonsingular algebraic curve X, of genus g defined over a Finite Field Fq2 with q2 elements
and irreducible over the algebraic closure, is maximal over Fq2 , if the cardinality of the set X(Fq2) of
its Fq2-rational points attains the Hasse-Weil upper bound: ]X(Fq2) = q2 + 1 + 2gq. We prove that
the following family of curves is maximal and, in some cases, is covered by the Hermitian Curve:

Theorem The curve X(q;n) defined over X(Fq2n) by:

yq
2 − y = x

qn+1
q+1 ,

with n ≥ 3 and odd; is maximal.

These curves generalize Garcia and Stichtenoth’s curves yq
2 − y = xs

2−s+1; over Fq2 and q = s3 [1],
and the curve introduced in Serre’s lecture at AGCT-10 y4 + y = x3 over F64. For s = 3 the curve
is not Galois-covered by the Hermitian curve, while for s = 2 it is Galois-covered by the Hermitian
curve [2]. Recently [3], Giulietti and Korchmaros gave the first example of a maximal curve which is
not covered by the Hermitian Curve over Fq6 , for q > 8.

References

[1] A. Garcia, F. Torres, On unramified coverings of maximal curves , Proceedings AGCT-10, Semin.
Congr., to appear.

[2] A. Garcia, H. Stichtenoth,A maximal curve which is not a Galois subcover of the Hermitian
curve, Bulletin of the Brazilian Mathematical Society 37 (2006), 139 - 152.

[3] M. Giulietti, G. Korchmaros,A new family of maximal curves over a Finite Field,
arXiv:0711.0445v1.

Irreducible Cyclic Codes

Asha Rao

RMIT University

Finding the weights of irreducible cyclic codes is a recurring problem in the literature. Even
determining the weights of two-weight irreducible cyclic codes is still an open problem. The important
early work in this area includes [1, 2] but in recent years there has been a number of papers revisiting
this problem, for example [3, 4].

Let p be a prime number and K = GF (p, 1) the finite field of p elements. Let L = GF (p,m)
be the extension of degree m over K. Let n be a divisor of pm − 1 and write λ = (pm − 1)/n,

(making λ and p coprime). Let ω be a primitive nth root of unity in L. Then c(p,m, λ) := {c(y) :=
(Tr(yωi))n−1

i=0 |y ∈ L} is called an irreducible cyclic code over K, where Tr is the trace of L over K.
The dimension of c(p,m, λ) is ordn(p), the multiplicative order of p modulo n.

Schmidt and White conjecture in [4] that an irreducible cyclic code is a two-weight code if and
only if it is a subfield code or a semiprimitive code or it is one of 11 exceptional cases, which they give
in Table 1, page 9 of their paper. We discuss this conjecture in the light of recent papers and present
a family of two-weight irreducible cyclic codes that are neither subfield codes nor semiprimitive.
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A Multilinear Generalization of the Tate Pairing

Wayne Raskind

Arizona State University

(Joint work with Ming-Deh Huang)

We consider a multilinear generalization of the Tate pairing that is of interest in cryptography,
especially in the case of a principally polarized abelian variety over a finite field. More generally, Let
V be an F` vector space of even dimension 2g that is a subgroup of a group variety defined over a
finite field Fq. Let ϕ be the geometric Frobenius and put N = 1−ϕ. Suppose V is also defined over
Fq in the sense that ϕV = V , and suppose moreover that the action of N is maximally nilpotent on
V . That is, N2g = 0, but N2g−1 6= 0. In particular, V (Fq), the subgroup of Fq-points in V , is of
F`-dimension one. For i = 0, ..., d = 2g− 1, let V2i−d = kerN i+1, and Gr2i−d = kerN i+1/ kerN i. Let
I = {d, d − 2, ..., −d} and I+ = {d, d − 2, ..., 1}. Then (1) For all i ∈ I, GriV is of F`-dimension
one and is Fq-rational in the sense that ϕx = x for x ∈ GriV . (2) A non-trivial 2g-linear alternating
pairing on V taking values in a group G which is isomorphic to Z/`Z induces a non-trivial multilinear
pairing:

GrdV ×Grd−2V × ...×Gr−dV → G.

(3) Moreover if<,>: V×V → G is a non-degenerate bilinear pairing, then the bilinear pairing induces
a perfect pairing between Gri and Gr−i for i ∈ I+, and the (2g)-linear pairing GrdV ×...×Gr−dV → G
sending vi ∈ Vi to (

∏
i∈I+ bi)t, where t is a generator of G and bit =< vi, v−i >, is identical, up to a

constant factor, to the multilinear pairing in (2).
In the case where g = d = 1, E is an elliptic curve over Fq and V = E[`], the points of order

` defined over an algebraic closure of Fq, the condition on N amounts to Frobenius trace being 2
modulo ` and V (Fq) being of F` dimension one. The pairing resulting from the filtration V1 ⊃ V−1

is essentially the Tate pairing. In the case of the Jacobian of a curve, the perfect pairing between
Grd and Gr−d is again essentially the Tate pairing. We will also discuss computational problems in
multilinear algebra that are related to and motivated by this construction.
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Polynomials on F2m with good resistance to cryptanalysis

Francois Rodier

Institut de Mathématiques de Luminy

(Joint work with Y. Aubry, G. McGuire)

Vectorial Boolean functions are useful in private key cryptography for designing block ciphers.
Two main attacks on block ciphers are differential attacks and linear attacks. An important criterion
on Boolean functions is a high resistance to the differential cryptanalysis. K. Nyberg has introduced
the notion of differential uniformity δ to characterize those functions which have the better resistance
to differential attacks. Boolean functions with small δ are highly appreciated for cryptographic
purpose. Such functions with δ = 2 are called almost perfect nonlinear (APN). Up to now, the
study of APN functions was especially devoted to the power func- tions. Recently, Budaghyan and
al. showed that certain binomial quadratic functions were APN. Recently it has been shown by
Hernando and McGuire that the Gold and Kasami functions are the only monomials where d is odd
and which give APN functions for an infinity of values of m. G. McGuire conjectured that the Gold
and Kasami functions are the only APN functions which are APN on infinitely many extensions of
their field of definition. We prove some results toward this conjecture. We use some results about
surfaces on finite fields. H. Janwa showed, by using Weils bound, that certain cyclic codes could
not correct two errors. A. Canteaut showed by using the same method that certain power functions
were not APN for a too large value of the exponent. We could generalize this result to all the
polynomials. We prove that when one fixes the degree of a polynomial then, under some condition,
the corresponding function can have a low differential uniformity only finitely many often.

The second weight of Generalized Reed-Muller Codes in most cases

Robert Rolland

Institut de Mathématiques de Luminy

Let Fq be the finite field with q elements and n ≥ 1 an integer. Let d be an integer such that
1 ≤ d < n(q− 1). The generalized Reed-Muller code of order d is the following subspace of the space

F(qn)
q :

RMq(d, n) =
{(
f(x)

)
x∈Fnq

| f ∈ Fq[X1, · · · , Xn] and deg(f) ≤ d
}
.

Let us denote by a and b the quotient and the remainder in the Euclidian division of d by q − 1,
namely

d = a(q − 1) + b and 0 ≤ b < q − 1.



Let us denote by W2, the second weight, namely the weight just above the minimal distance. In
this talk, we determine for n ≥ 3, q ≥ 3 and b 6= 1 the second weight W2 (or the second number of
points of a hypersurface N2 = qn −W2) of the generalized Reed-Muller code and for b = 1 we give a
lower bound on this second weight. This work is done for all the other values of d not yet handled,
namely q ≤ d ≤ (n− 1)(q− 1) for q ≥ 3. The proof which follows the method introduced by O. Geil
is based on Gröbner basis technics.

Moreover, for b 6= 1 we determine hyperplane arrangements reaching the second weight, but we
don’t prove that these words are the only words reaching this value.

Solvability of systems of polynomial equations over finite fields

Ivelisse Rubio

University of Puerto Rico at Ŕıo Piedras

(Joint work with F. Castro)

In this work we determine the solvability of families of systems of polynomial equations over finite
fields by computing the exact divisibility of the exponential sums associated to the systems. This
generalizes a theorem of Carlitz to systems of equations. In some cases, our result gives an upper
bound for the Waring number of systems of diagonal equations. Also, as a by-product, we obtain
information about the p-divisibility of the number of solutions of the systems for cases for which the
well known results of Chevalley-Warning and Katz do not give any information.

On the Second Order Nonlinearity of a Cubic Maiorana-McFarland Bent
Function

Sumanta Sarkar

Projet SECRET, INRIA Rocquencourt

(Joint work with Sugata Gangopadhyay)

In this paper we study a new class of cubic Maiorana-McFarland bent functions which is based
on a permutation constructed by Dobbertin [2]. First we show that this function can not have an
affine derivative. Then we determine a lower bound of the second order nonlinearity of this function.

Let n = 2t, where t = 2m + 1 and m ≥ 2. We define the cubic Maiorana-McFarland function
φn : F2t×F2t → F2 as φn(x, y) = Trt1(x(y2m+1+1+y3+y)), where y 7→ y2m+1+1+y3+y is a permutation
over F2t [2].

Theorem The function φn does not possess affine derivatives.

Using Carlet’s result (Corollary 2, [1]), we derive the following lower bound of the second order
nonlinearity (nl2(φn)) of the function φn. To do this we also use the result of Theorem .

Theorem The lower bound of the second order nonlinearity of φn is given as

nl2(φn) ≥ 2n−1 − 1
2

√
(2n − 1)2

n+t
2

+3 + 2n

≈ 2n−1 − 2
7n+4

8 .

For larger n, this lower bound of second order nonlinearity of φn is better than the lower bound
given in [1] for a general n-variable Boolean function which does not possess affine derivatives.
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On finite semifields of prime degree and the equivalence classification of
subspaces of invertible matrices

John Sheekey

University College Dublin and Claude Shannon Institute

(Joint work with Rod Gow)

Let q be a power of a prime, n be a positive integer, and let A and B be n-dimensional subspaces
of n × n matrices over Fq in which each non-zero element is invertible. We say that A and B are
equivalent if there exist invertible n× n matrices X and Y , say, with

XAY = B.

We can show that the number of equivalence classes of such subspaces equals the number of
isotopy classes of semifields of degree n over Fq. When n = 3, results of Menichetti allow us to
enumerate the number of equivalence classes, as semifields of degree 3 are classified. When n = r is
a prime, a theorem of Weil and Lang enables us to prove that when q is sufficiently large, a semifield
of degree r over Fq always has a primitive element. Moreover, we can in principle enumerate the
number of equivalence classes of subspaces of r-dimensional subspaces of r × r invertible matrices.

On the Distribution of the Number of Points on Elliptic Curves in a
Tower of Extentions of Finite Fields

Igor E. Shparlinski

Macquarie University

(Joint work with Omran Ahmadi)

Let E be an elliptic curve defined over Fq, a finite field of q elements. By the Hasse-Weil theorem,
the number #E(Fq) of Fq-rational points on E satisfies #E(Fq) = q+1−aq with |aq| ≤ 2q1/2, see [1].

The distribution of #E(Fp), where E is defined over Q and reduced modulo consecutive primes
p (that is, q = p) is described in the Sato–Tate conjecture, which has been recently proven [2]. In
particular, the proportion of primes p for which ap/2p

1/2 ∈ [β, γ] is approximated given by

µST (β, γ) =
2

π

∫ γ

β

√
1− α2dα.



Here we fix an ordinary curve E over Fq, consider it in the tower of extensions, that is, the sets
E(Fqn), and study the ratios aqn/2q

n/2, n = 1, 2, . . . . In particular, we show that their distribution
is not governed by µST (β, γ) but by a different distribution function

λ(β, γ) =
1

π

∫ γ

β

(1− α2)−1/2dα.

We also discuss some open problems, in particular the possibility of generalising this result to
curves of higher genus, where two possible interpretations are possible: related to the number of
points on a curve and on its Jacobian, respectively.
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Classification of arcs of size q+7
2 with a conical subset of size q+3

2

Heide Sticker

Ghent University

(Joint work with K. Coolsaet)

Consider the Desarguesian projective plane PG(2, q) for odd q. Define a k-arc of PG(2, q) to be
a set S of points, with |S| = k, such that no three elements of S are collinear. It is easily proved
that a k-arc which is not part of a conic can intersect a conic in at most (q + 3)/2 points. Arcs of
this type with size (q + 5)/2 must necessarily contain an external point to the conic and are easily
described.

For the next case, of two extra points, i.e., arcs of this type of size |S| = (q+ 7)/2, we present an
explicit complete classification, up to PGL-equivalence.

Our methods are very similar to those of Korchmáros and Sonnino [1], but instead of using the
group structure of a cyclic affine plane of order q, we use the properties of the cyclic group of all
norm 1 elements of the field GF(q2). This has the advantage that the classification can be formulated
without the use of groups, making it very straightforward (and efficient) to use in further computer
programs.

We have applied this representation in computer searches for arcs of this type of size larger than
(q + 7)/2, of which currently only a few examples are known.
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On Projective Planes and Ternary Rings, and their Applications

Klara Stokes

Universitat Rovira i Virgili

(Joint work with Maria Bras-Amorós)

A new construction of projective planes from ternary rings is presented. Explicit constructions
of projective planes are usually given in coordinates. It is however possible to give an explicit
construction of a projective plane without coordinates, enumerating the points of the planes from 1
to n, where n is the cardinality of the plane.

This construction of projective planes was invented in order to give projective planes for config-
urations used in P2P UPIR (Peer To Peer User-Private Information Retrieval). In the search for
optimal configurations for P2P UPIR we found and proved that these optimal configuration were
exactly the projective planes. When defining projective planes for P2P UPIR it makes no sense
introducing coordinates, since the points and the lines of the plane correspond to users and com-
munication spaces, and these do not have any underlying structure before the introduction of the
projective plane.
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A study of (x(q + 1), x; 2, q)-minihypers

Leo Storme

Ghent University

(Joint work with I. Landjev)

We study the weighted (x(q + 1), x; 2, q)-minihypers. These are weighted sets of x(q + 1) points
in PG(2, q) intersecting every line in at least x points. We investigate the decomposability of these
minihypers, and define a switching construction which associates to an (x(q + 1), x; 2, q)-minihyper,
with x ≤ q2 − q, not decomposable in the sum of an other minihyper and a line, a (j(q + 1), j; 2, q)-
minihyper, where j = q2 − q − x, again not decomposable into the sum of an other minihyper
and a line. We also characterize particular (x(q + 1), x; 2, q)-minihypers. Additionally, we show
that (x(q + 1), x; 2, q)-minihypers can be described as rational sums of lines. In this way, this work
continues the research on (x(q+ 1), x; 2, q)-minihypers by Hill and Ward [1], giving many new results
on these minihypers.
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A characterization of the linearity of the Gray image of a linear code over
a Galois ring

H. Tapia-Recillas

Universidad Autónoma Metropolitana-I

(Joint work with C.A. López-Andrade)

In [1] it is shown that some non-linear binary codes, including the Kerdock and Preparata codes,
are the image of Z4-linear codes under the Gray map defined on the ring Z4. Several interesting
questions arise not just on codes over this ring but over the ring Zpk where p is any prime and k a
positive integer, Galois rings, and, more generally, over finite chain rings.

If Φ is the (classical) Gray map over Zn
4 , in [1] (Section II, Theorem 5, pag. 305) the following

relation is proved

Φ(a) + Φ(b) + Φ(a + b) = Φ(2(a0 ∗ b0)) (∗),

and used to give a characterization of the linearity of the Gray image of a linear code.

Several generalizations of the the Gray map have appeared in the literature on rings that include
Zpk , and more broadly, finite chain rings in which the class of Galois rings is included. A generalization
of the above relation for the ring Zp2 has appeared in the literature and a similar result about the
linearity of the Gray image of a linear code defined over this ring is proved.

By using the Witt ring of (truncated) vectors over the residue field of the Galois ring R =
GR(p2,m) a relation similar to (∗) is obtained and used to give a characterization of the linearity
of the Gray image of a R-linear code. Examples of Galois rings include Zpk and finite fields. If
GR(p2,m) = Z4, i.e., p = 2 and m = 1, the relation (∗) given in [1] is recovered.
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Gauss periods as low complexity normal bases

David Thomson

Carleton University

(Joint work with M. Christopoulou, T. Garefalakis and D. Panario)

An element α ∈ Fqn is called normal over Fq if N = {α, αq, . . . , αqn−1} is linearly independent. We
call N a normal basis. Normal bases are used in communications systems where fast exponentiation
is highly required. The bottleneck when using a normal basis is in the efficiency of the multiplier.
This efficiency is directly related to the complexity of the normal basis.

Let q be a prime power and let n, k be integers such that r = nk + 1 is a prime not dividing
q. Let β be a primitive rth root of unity in Fqkn and let τ be a primitive kth root of unity in Zr.

Then α =
k−1∑
i=0

βτ
i ∈ Fqn is a Gauss period of type (n, k) [1]. Let e be the order of q in Zr, then α

generates a normal basis of Fqn over Fq if and only if gcd(nk/e, n) = 1. Normal bases obtained by
Gauss periods of type (n, 1) for any q and (n, 2) for q = 2 define the optimal normal bases with the
minimum possible complexity 2n− 1.

We generalize the result of [2] to give an upper bound on the complexity of the normal basis
generated by the trace of a (not necessarily optimal) normal element. This bound depends only on
the number of non-zero elements in each row of the multiplication table of the original basis.

We also study the multiplication tables of normal bases obtained by Gauss periods for small
values of n and k. We expand on the results in [2] to give the complexity of a normal basis generated
by the trace of a Gauss period normal basis for small values of n and k.
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Some remarks on permutation polynomials

Alev Topuzoğlu

Sabancı University

This talk intends to give a short survey of results which appeared in three recent papers [1, 2, 3],
and present new results on their applications.

A well-known result of Carlitz, that any permutation polynomial ℘(x) of a finite field Fq is a
composition of linear polynomials and the monomial xq−2, implies that any ℘(x) can be represented
by a polynomial Pn(x) = (. . . ((a0x + a1)

q−2 + a2)
q−2 . . . + an)q−2 + an+1, for some n ≥ 0. Results

on the cycle structure of Pn(x) will be given. Evaluation of the smallest integer n, such that Pn(x)
represents ℘(x) is of interest. This integer n, which we define to be the Carlitz rank of ℘(x) is, of
course, the least number of “inversions” xq−2, needed to obtain ℘(x). A method for determining the



Carlitz rank and results on the enumeration of permutations of Fq with a fixed Carlitz rank will be
presented.

Some new applications in coding theory and pseudorandom number generation will also be dis-
cussed.

This is joint work with E. Aksoy, A. Çeşmelioğlu, and W. Meidl.
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Fq–pseudoreguli of PG(3, q3) and semifields of order q6

Rocco Trombetti

Universitá di Napoli Federico II

(Joint work with Michel Lavrauw, Giuseppe Marino and Olga Polverino)

In [1] and [2], the finite semifields of order q6 which are two–dimensional over their left nucleus
and six–dimensional over their center have been geometrically partitioned into several non–isotopic
classes by using the associated linear sets in P = PG(3, q3). Nevertheless, in the same paper a
connection between semifields belonging to one of these classes (precisely, class F5) and an other
geometric object of P called Fq–pseudoregulus, has been discovered. So far, the known examples of
semifields belonging to the class F5 are some Knuth semifields and some Generalized Twisted Fields.
In [1], these examples have been characterized in terms of the associated Fq–pseudoreguli. Taking
into account these results, in this conference, starting from the study of an Fq–pseudoregulus of P and
exploiting the above mentioned connection we derive, up to the isotopy relation, the multiplication
of some semifields belonging to the class F5. We present several computer-generated examples of
new semifields belonging to this class; finally, we are able to generalize some of these to an infinite
family belonging to F5. This family turns out to be a new infinite family of semifields.
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The intersection of a subline and an Fq-linear set

Geertrui Van de Voorde

Ghent University

(Joint work with Michel Lavrauw)

Let PG(n, q) be the n-dimensional projective space over the finite field Fq with q elements. A linear
pointset in PG(n, q) can be defined in several equivalent ways. We use the following geometrical
definition.

Suppose q = qt0, with t ≥ 1. By ”field reduction”, the points of PG(n, q) correspond to (t − 1)-
dimensional subspaces of PG((n + 1)t − 1, q0), since a point of PG(n, q) is a 1-dimensional vector
space over Fq, and so a t-dimensional vector space over Fq0 . In this way, we obtain a partition D of
the pointset of PG((n + 1)t − 1, q0) by (t − 1)-dimensional subspaces, which forms a Desarguesian
spread. Let D be the Desarguesian (t − 1)-spread of PG((n + 1)t − 1, q0). If U is a subset of
PG((n + 1)t − 1, q0), then we define B(U) := {R ∈ D||U ∩ R 6= ∅}, and we identify the elements
of B(U) with the corresponding points of PG(n, qt0). If U is subspace of projective dimension k of
PG((n+ 1)t− 1, q0), then B(U) is an Fq0-linear set of rank k + 1.

Using this representation, we investigate the intersection of Fq-linear sets. For example, we show
that a subline, i.e. an Fq-linear set of rank 2, intersects an Fq-linear set of rank 3 in 0, 1, 2, 3 or q+ 1
points.

On permutation polynomials of prescribed shape

Qiang Wang

Carleton University

(Joint work with A. Akbary and D. Ghioca )

Enumerating permutation polynomials over finite fields by degrees is one of open problems pro-
posed by Lidl and Mullen in 1988. When the field is prime field Fp and the degree is p − 2, Das
gave an asymptotic formula and explicit bounds of the number of these permutation polynomials in
2002. His result was later extended to any field Fq and degree q − 2 by Konyagin and Pappalardi.
Moreover, Konyagin and Pappalardi studied the number of permutation polynomials which have no
monomials of prescribed degrees. Here we count permutation polynomials of Fq which are sums of
monomials of prescribed degrees. This allows us to prove certain results about existence of permu-
tation polynomials of prescribed shape, which also generalize some recent results on permutation
binomials obtained by Laigle-Chapuy, Masuda and Zieve respectively.

Primitive normal polynomials over finite fields with a prescribed
coefficient for 11 ≤ n ≤ 14

Xiaozhe Wang

China National Digital Switching System Engineering and Technological Research Center

(Joint work with Shuqin Fan)



This thesis concerns of the existence of a primitive normal polynomial with any coefficient ar-
bitrarily prescribed.Let n = 11, 12, 13, 14, and q a prime power.We obtain that for any element
a ∈ Fq and any 1 < m < n, there exists a primitive normal polynomial f(x) = xn − σ1x

n−1 + · · · +
(−1)n−1σn−1x + (−1)nσn of degree n with σm = a except σ1 = 0. This has been proved for n ≥ 15
by Fan et.al[3],but was unestablished for n ≤ 14.

In this work, we obtain new estimates for the number of primitive normal polynomials of degree
n over Fq with any coefficient arbitrarily prescribed.We improve upon the estimates of [3] by rewrit-
ing the system of trace equations. With this new estimate and a new variation of Cohen’s sieve
techniques[4] which makes the computation easier,we achieve the following theorem:

Theorem Let n = 11, 12, 13, 14,q a prime power. For any given a ∈ Fq and any integer 1 < m < n,
there exists a primitive normal polynomial f(x) = xn − σ1x

n−1 + · · · + (−1)n−1σn−1x + (−1)nσn of
degree n over Fq with σm = a with exceptions: (m, a) = (1, 0).
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Legendre-Sidelnikov Sequences

Arne Winterhof

Austrian Academy of Sciences

(Joint work with D. Gomez and M. Su)

Several sequences with nice pseudorandomness properties in view of applications in wireless com-
munication and cryptography have been defined using the quadratic character of a finite field, see the
survey [1] and references therein. Among these sequences are the Legendre sequence, the Sidelnikov
sequence and the two-prime generator.

Here we introduce and analyze a new sequence combining the concepts of these three sequences.
Let p be an odd prime and q the power of an odd prime such that gcd(p, q− 1) = 1. We consider

the p(q − 1)-periodic binary sequence (si) defined by

si =


1, if p | i,
0, if i ≡ (q − 1)/2 mod q − 1, p 6 |i,
1−( ip)η(gi+1)

2
, otherwise,

i ≥ 0,

where
(
.
p

)
denotes the Legendre symbol, η(.) is the quadratic character of Fq, and g is a primitive

element of Fq.



We provide a formula for the number of 1s in a period of (si) which shows that (si) is balanced
if p = q. We determine the exact values of the periodic autocorrelation and an upper bound on the
absolute value of the aperiodic autocorrelation. Moreover, we analyze the linear complexity of (si)
and related measures.

The proofs are mainly based on results on character sums over finite fields.
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New parameters for Bent Functions

Jacques Wolfmann

IMATH(GRIM), Université du Sud Toulon-Var

k-boolean fuctions are the maps from Fk2 into F2. Bent functions are the boolean functions whose
Walsh coefficients have constant magnitude and they only exist if k is an odd number. They are
interesting for Coding Theory, Cryptology and well-correlated binary sequences.

Let k = 2t, n = 22t−1 − 1. B(k) is the set of k-bent functions.
A simple way to classify bent functions is to consider their degrees and their weights. On the other
hand, B(k) is invariant under the action of the affine linear group of Fk2 and under the action of the
group of translations of affine boolean functions. The corresponding partition into orbits define a
classification in B(k) and the corresponding ”affine equivalence“.

Two infinite families of bent functions are known but nobody knows if every bent function is
affine equivalent to a member of these families.

In this work, we first restrict the study at a particular subset B0(k) of bent functions, without loss
of generality. Every member of B0(k) is then described by means of two (k − 1)-boolean functions
fp and fq. Several properties of these functions are given. The Mattson-Solomon polynomials of
fp, fq, fp+fq in F2[x]/(xn−1) are specified as members of particular binary cyclic codes. This leads
to introduce two integers i and s as new parameters for every k-bent function of B(k) This gives rise
to a new classification which is more sharp that the one defined only by degrees and weights or by
affine equivalence.

In order to illustrate this fact we present examples of bent functions having the same degree
and the same weight but different new parameters i, s and also examples of affine equivalent bent
functions with different new parameters. Furthermore, we give several additional properties of the
new parameters and we specify the classification for the case k = 6.

An Algebraic Characterization of q-ary Images of qn-ary Codes Invariant
under a Permutation

Isaac Woungang

Ryerson University

(Joint work with H-C. Chao, M. K. Denko, S. Misra, and F. Huang)



An algebraic characterization of the q-ary images of linear codes of length m over Fqn which are
invariant under the action of a permutation σ (σ-codes), is introduced for the first time. To this
effect, We consider σ a permutation of {0, 1, . . . ,m− 1} as a product of p disjoint cycles ci, and we
define σ̃ a linear mapping on F nm

q induced by σ. Then, we derive the following result:

Theorem If C ⊆ Fm
qn is a σ-code (code invariant under σ), then Dα(C) ⊆ F nm

q , the q-ary image
of C with respect to α, a basis of Fqn over Fq, is a σ̃-code.

To characterize the class of codes {Dα(C), C ⊆ Fm
qn a σ-code}, let Γ be the subspace generated

by the matrices of (γ)m and σ̃ relatively to the canonical basis of Fmn
q , where (γ)m = Dα ◦Φγ ◦D−1

α

and Φγ : Fm
qn → Fm

qn is defined by Φγ(X0, . . . , Xm−1) = (γX0, . . . , γXm−1), γ ∈ Fqn = Fq(β). We get:

Theorem Let W ⊆ Fmn
q be a Fq-subvector space of Fmn

q , W is the q-ary image of a σ-code C ⊆ Fm
qn

if and only if W is a Γ-submodule of Fmn
q .

To characterize in-depth the above submodules, we investigate the structure of the matrices Qk,
k > 0, where Q is the matrix of σ̃−1 ◦ (β)m relatively to the canonical basis of Fmn

q . Based on this,
we obtain the main theorem.

Theorem (1) If there exists a polynomial f(X) ∈ Fq[X] such that P = f(Q), then the Fq[X]-
submodules of F nm

q for the action induced by Q are the q-ary images, with respect to α, of σ-codes
in Fm

qn. (2) If Fq(β) = Fq(β
l), where l = l.c.m0≤i<p(li), li the order of the cycle ci, then there exists

a polynomial f(X) ∈ Fq[X] such that P = f(Q).
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Zeta functions of an optimal tower of function fields

Alexey Zaytsev

University College Dublin and Claude Shannon Institute

(Joint work with Gary McGuire)

A recursive formula for the L-polynomial of each step in the second Garcia-Stichtenoth tower is
obtained. Additionally we prove that the Galois closure of the second Garcia-Stichtenoth tower (cf.
[3]) is an ordinary tower and hence the initial tower is also ordinary. In particular, the L-polynomials
up to step 6 were computed.

More precisely, let T1 := F4(x1) be a rational function field. Then the tower is defined by (cf. [1])

Tn := F4(x1, . . . , xn), where x2
i + xi =

x3
i−1

x2
i−1 + xi−1

.

After applying some observations (which are easy for this specific case) and the Kani-Rosen
decomposition (cf. [2]) of Jacobians we obtain the following theorem.



Theorem For the tower of the function field mentioned above, we have the following decomposition
of the L-polynomials:

LT2 = 1 + 3T + 4T 2

LT3 = (1 + 3T + 4T 2)3

LT4 = (1− T + 4T 2)2(1 + 3T + 4T 2)7

LT5 = (1− T + 4T 2)4(1 + 3T + 4T 2)11(1 + T + 4T 2)2(1 + 2T + T 2 + 8T 2 + 16T 4)2.

In general, if n ≥ 6 then

LTn = (1 + T + 4T 2)2n−8(1 + 3T + 4T 2)12n−49(1− T + 4T 2)6n−26

(1 + 2T + T 2 + 8T 3 + 16T 4)6n−24(1 + T − T 2 + 3T 3 − 4T 4 + 16T 5 + 64T 6)2n−10

L2n−12
Y5,1

. . . L2
Yn−2,1

,

where LYi,1 is a quotient of the L-polynomial of a function field

F4(x2, . . . , xi, u+ 1/x1)

by the L-polynomial of Ti−1 and u is a root of T 2 + T +
x4
i

(xi + 1)(1 + γ2x2
i )

.
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